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 Big Data Analytics (BDA) is important to utilize data from hospital systems to reduce 
healthcare costs. BDA enable queries of large volumes of patient data in an interactively 
dynamic way for healthcare. The study objective was high performance establishment of 
interactive BDA platform of hospital system. A Hadoop/MapReduce framework was 
established at University of Victoria (UVic) with Compute Canada/Westgrid to form a 
Healthcare BDA (HBDA) platform with HBase (NoSQL database) using hospital-specific 
metadata and file ingestion. Patient data profiles and clinical workflow derived from 
Vancouver Island Health Authority (VIHA), Victoria, BC, Canada. The proof-of-concept 
implementation tested patient data representative of the entire Provincial hospital systems. 
We cross-referenced all data profiles and metadata with real patient data used in clinical 
reporting. Query performance tested Apache tools in Hadoop’s ecosystem. At optimized 
iteration, Hadoop Distributed File System (HDFS) ingestion required three seconds but 
HBase required four to twelve hours to complete the Reducer of MapReduce. HBase 
bulkloads took a week for one billion (10TB) and over two months for three billion (30TB). 
Simple and complex query results showed about two seconds for one and three billion, 
respectively. Apache Drill outperformed Apache Spark. However, it was restricted to 
running more simplified queries with poor usability for healthcare. Jupyter on Spark 
offered high performance and customization to run all queries simultaneously with high 
usability. BDA platform of HBase distributed over Hadoop successfully; however, some 
inconsistencies of MapReduce limited operational efficiencies. Importance of 
Hadoop/MapReduce on representation of platform performance discussed. 
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1. Introduction 

Gantz and Reinsel [1] predicted in their ‘The Digital Universe’ 
study that the digital data created and consumed per year would 
reach 40,000 Exabyte by 2020, from which a third will promise 
value to organizations if processed using big data technologies. In 
fact, global digital patient data expected to reach 25 Exabytes 
(1018 bytes) in 2020 [2]. Furthermore, A McKinsey Global 
Institute stated US healthcare that uses Big Data effectively could 
create more than $300 billion in value from cost savings annually 
[3]. At the same time in 2013, Canada Health Infoway [4] 
produced a white paper to solidify the meaningful use of patient 

data to cut healthcare costs for each of the Provinces. However, the 
increase in digital data and fluid nature of information- processing 
methods and innovative big data technologies has not caused an 
increase of implementations in healthcare in Canada and abroad. 
Furthermore, there are very few if any of the 125 countries 
surveyed by the World Health Organization with any Big Data 
strategy for universal healthcare coverage of their eHealth profiles 
[5]. Conventional systems in healthcare are very expensive to 
implement and establish that further reduces the uptake of open 
source software like Hadoop/MapReduce frameworks. 

Health Big Data is a large complex-distributed highly 
diversified patient data requiring high performance analytical tools 
to utilize large volume of data for healthcare application [6-8]. Big 
Data Analytics (BDA) is a platform with analytical technologies 
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frame worked to extract knowledge in real-time for evidence-
based medicine, medical services and transport of inpatients in 
hospital wards, onset of in-hospital acquired infections, and 
treatments linked to health outcomes including scientific and 
clinical discoveries [3, 4, 9-11]. However, a BDA platform is of 
little value if decision-makers do not understand the patterns it 
discovers and cannot use the trends to reduce costs or improve 
processes. Subsequently, BDA research is important and highly 
innovative to effectively utilize data quickly for the ongoing 
improvement of health outcomes in bioinformatics, genome 
sequencing, and tertiary healthcare [12-16].  

After extensive literature review, many Big Data technologies 
with Hadoop/MapReduce are available but few applied in 
healthcare (Table 1 in Appendix). BDA platform called 
Constellation deployed at the Children’s Mercy Hospital in Kansas 
City, US successfully matched patient data of children to their 
whole-genome sequencing for treatment of potentially incurable 
diseases [43]. Their big data analytics study showed that, in 
emergency cases, the differential diagnosis for a genetic disease in 
newborn patients was identifiable in 50 hours [42]. Further 
improvement using Hadoop reduced the analysis time for the 
whole genome sequencing from 50 to 26 hours [44]. 
Unfortunately, even with these success stories of fully functional 
BDA platforms in bioinformatics, there are few studies and 
published reporting of BDA platforms used by health providers in 
hospital systems.  

There are many alternative solutions for databases in Big Data 
platforms; choice of the best solution depends on the nature of the 
data and its intended use, e.g., [37]. In practice, while many 
systems fall under the umbrella of NoSQL systems and are highly 
scalable (e.g., [45], these storage types are quite varied). Big Data 
is characterized in several ways: as unstructured [19], NoSQL [31, 
36], key-value (KV) indexed, text, information-based [46], and so 
on. In view of this complexity, BDA requires a more 
comprehensive approach than traditional data mining; it calls for a 
unified methodology that can accommodate the velocity, veracity, 
and volume capacities needed to facilitate the discovery of 
information across all data types [4]. Furthermore the KV data 
stores represent the simplest model of NoSQL systems: they pair 
keys to values in a very similar fashion to show a map (or 
hashtable) works in any standard programming language. Various 
open-source projects provide key-valued NoSQL database 
systems; such projects include Memcached, Voldemort, Redis, and 
Basho Riak, e.g., [22]. HBase was chosen because it simplified the 
emulation of the columns using the metadata in each column rather 
than the data types and the actual relationships among the data. 
HBase also has a dynamic schema that can be uploaded via other 
Apache applications; therefore, the schema can be changed and 
tested on the fly. Another benefit of using HBase is that further 
configurations can be accomplished for multi-row transactions 
using a comma-separated value (.CSV) flat file [47].  

The KV class of store files in databases is the heart of data 
storage in HBase that provides inherent encryption. Privacy 
mandates are a major barrier for any BDA implementation and 
utilization. The Health Insurance Portability and Accountability 
Act (HIPAA), as well as Freedom of Information and Protection 
of Privacy (FIPPA) Act requires the removal of 18 types of 
identifiers, including any residual information that could identify 
individual patients, e.g., [48]. Therefore, privacy concerns can be 
addressed using new database technologies, such as key-value 
(KV) storage services. For example, Pattuk, Kantarcioglu, 

Khadilkar, Ulusoy, and Mehrotra [49] proposed a framework for 
securing Big Data management involving an HBase database – 
called Big Secret – securely outsources and processes encrypted 
data over public KV stores. 

In a hospital system, such as for the Vancouver Island Health 
Authority (VIHA), the capacity to record patient data efficiently 
during the processes of admission, discharge, and transfer (ADT) 
is crucial to timely patient care and the quality of patient-care 
deliverables. The ADT system is the source of truth for reporting 
of the operations of the hospital from inpatient to outpatient and 
discharged patients. Proprietary hospital systems for ADT also 
have certain data standards that are partly determined by the 
physical movement of patients through the hospital rather than the 
recording of diagnoses and interventions. Among the deliverables 
are reports of clinical events, diagnoses, and patient encounters 
linked to diagnoses and treatments. Additionally, in most Canadian 
hospitals, discharge records are subject to data standards set by 
Canadian Institute of Health Information (CIHI) and entered into 
Canada’s national Discharge Abstract Database (DAD). 
Moreover, ADT reporting is generally conducted through manual 
data entry to a patient’s chart and then it is combined with 
Electronic Health Record (EHR), which could also comprise auto-
populate data, to conglomerate with other hospital data from 
provincial and federal health departments [50]. These two 
reporting systems, i.e., ADT and DAD, account for the majority of 
patient data in hospitals, but they are seldom aggregated and 
integrated as a whole because of their complexity and large 
volume. A suitable BDA platform for a hospital should allow for 
the integration of ADT and DAD records to query the data to find 
unknown trends at extreme volumes of the entire system. 
However, there are restrictions that limit the data that gets 
recorded, especially on discharging a patient a physician is legally 
required only to record health outcomes rather than the details of 
interventions. For these and other reasons, health informatics has 
tended to focus on the structure of databases rather than the 
performance of analytics at extreme volumes. 

Currently, the data warehouse at VIHA has over 1000 
(relational) tables that include alias pools for data integrity of 
patient encounters in ADT of the hospital system. Its total size 
estimated at one billion records or 14 Terabytes (TB), and it is one 
of the largest continuous patient records in Canada [51]. Huge 
volumes of highly diversified patient data are continuously added 
into this collection; this equates to annually 500 million records or 
five TB. Currently, at VIHA, numerous data manipulations and 
abstracting processes put into place via non-enterprise platforms to 
combine patient data from the relational databases of the hospital 
system customized to apply clinical and operational queries. 
Neither business intelligence (BI) tools nor data warehouse 
techniques are currently applied to both data sets of ADT and DAD 
at the same time and over its entire volume of data warehouse. 
Therefore, we propose an enterprise BDA platform with 
applications to query patient data of a database representing a 
hospital system comprised of ADT and DAD databases. 

2. Interactive Healthcare Big Data Analytics (HBDA) 
Framework  

2.1. Conceptual Framework 

The conceptual framework for a BDA project in healthcare is 
similar to that of a traditional health informatics analytics. That is, 
its essence and functionality is not very different from that of 
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conventional systems. The key difference lies in data-processing 
methodology. In terms of the mining metaphor, data represent the 
gold over the rainbow while analytics systems represent the 
leprechaun that found the treasure or the actually mechanical 
minting of the metals to access it. Moreover, healthcare analytics 
is defined as a set of computer-based methods, processes, and 
workflows for transforming raw health data into meaningful 
insights, new discoveries, and knowledge that can inform more 
effective decision-making [23]. Data mining in healthcare has 
traditionally been linked to knowledge management, reflecting a 
managerial approach to the discovery, collection, analysis, sharing, 
and use of knowledge [52-53]. Thus, the DAD and ADT are 
designed to enable hospitals and health authorities to apply 
knowledge derived from data recording patient numbers, health 
outcomes, length of stay (LOS), and so forth, to the evaluation and 
improvement of hospital and healthcare system performance. 
Furthermore, because the relational databases of hospitals are 
becoming more robust, it is possible to add columns and replicate 
data in a distributed filing system with many (potentially cloud-
based) nodes and with parallel computing capabilities. The utility 
of this approach is that columns are combined (i.e., columns from 
the DAD and ADT database). In addition, such a combination can 
mimic data in the hospital system in conjunction with other clinical 
applications. Through replication, generation and ingestion, the 
columns can form one enormous file then queried (while columns 
added and removed or updated). 

BDA platform(s) should offer the necessary tools currently 
performed by hospitals and its managed relational databases to 
query the patient data for healthcare. Furthermore, the end user 
experience should include analytical tools with visualizations 
using web-based applications. To achieve this, a dynamic 
interactive BDA platform, and following our preliminary results 
from Chrimes, Moa, Zamani, and Kuo [54], established for 
healthcare application at the University of Victoria (UVic), in 
association with WestGrid, and Vancouver Island Health 
Authority (VIHA), Victoria, BC, Canada. Thus, our Healthcare 
BDA (HBDA) platform provided a proof-of-concept 
implementation and simulation of high performance using 
emulated patient data generated on WestGrid’s Linux database 
clusters located at UVic. Emulation consisted of reaching nine 
billion health records that represented the main hospital system of 
VIHA and its clinical reporting via its data warehouse (Figure 1). 
The emulated data utilized in simulation could capture the 
appropriate configurations and end-user workflows of the 
applications, while ultimately displaying health trends at the 
hospital and patient levels.  

Our team of collaborators existed between UVic, Compute 
Canada\WestGrid and VIHA that thru requirements gathering, 
usability testing and software installations established the 
framework of our HBDA platform. It comprised innovative 
technologies of Hadoop Distributed File System (HDFS) with 
MapReduce’s Job/Task Scheduler, and noSQL database called 
HBase. The database construct was complex and had many 
iterations of development over the past three-four years. There 
were many configurations of components included such as Apache 
Phoenix, Apache Spark and Apache Drill, as well as Zeppelin and 
Jupyter Notebook web-client interfaces. Furthermore, we required 
a proof-of-concept to implement in simulation before applying it 
to real patient data after rigorously approved by research ethics 
with guaranteed highly secured patient data. Our aim was 
effectively to query billions records of patient data stored in the 
VIHA with health professionals and providers to reveal its fast and 

reliable queries, as well as unveil unknown health trends, patterns, 
and relevant associations of medical services with health 
outcomes. 

 
Figure 1. The proposed framework of Health Big Data Analytics (HBDA) platform 
with Vancouver Island health authority (VIHA) under replicated Hadoop 
Distributed File System (HDFS) to form noSQL database via MapReduce loads 
with big data analytic tools interacting under parallelized deployment manager 
(DB) at Westgrid, UVic, Victoria. 

We constructed 50 million to nine billion patient records to 
form different levels of testing of our HBDA platform based on 
known data profiles and metadata of the patient data in the hospital 
system. Henceforward, our simulation should show significant 
improvements of query times; usefulness of the interfaced 
applications; and the applicability and usability of the platform to 
healthcare. To deal with the implementation challenges, we 
viewed HBDA as a pipelined data processing framework, e.g., 
[11], and worked in conjunction (interviewed) with VIHA experts 
(and potential stakeholders) to identify the metadata of important 
inpatient profiles (Figure 2). Additionally, the stakeholder 
provided the required patient data and workflow processes for both 
generating the reports and the application used for querying results 
to achieve visualizations. 

 
Figure 2. Main stakeholder groups of Physicians, Nurses, Health Professionals (i.e. 
epidemiologists and clinical reporting specialists), and Data Warehouse and 
Business Intelligence (BI) team (includes application platform and database 
integration) involved in clinical reporting at VIHA. 
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2.2 Overview 

 The objective of this platform implementation and simulated 
performance was to establish an interactive framework with large 
representative patient data aligned with front-end and interfaced 
applications linked to HDFS stack and noSQL database with 
visualization capabilities that allows users to query the data. For 
the implementation, advanced technologies created a dynamic 
BDA platform while generating emulated patient data over a 
distributed computing system, which is currently not in use at 
VIHA and many other health institutions in Canada. The 
implemented HBDA was big data centric and designed to make 
big data capabilities, including analytics using mainly SQL-like 
compatibilities with data warehouse team and front-end 
architecture for correct visualization, accessible to different 
stakeholders, especially physicians and healthcare practitioners 
(Figure 3). 

 
Figure 3. The main components of our Healthcare Big Data Analytics (HBDA) 
platform envisioned by stakeholders and derived from our team. It is important to 
note that the center of this diagram is truly the SQL-like code used to query the data 
because without it the other interconnected components would not provide any 
linkage to user and no meaningful use. 

The established BDA platform allowed for testing the queries’ 
performance that included actions and filters that corresponded to 
current reporting of VIHA’s clinical data warehouse. To test 
performance, the first step was to emulate the metadata and data 
profiles of VIHA’s ADT model, which is Cerner’s (proprietary) 
hospital system. The metadata derived for the patient encounter(s) 
combined with VIHA’s hospital reporting to CIHI of its DAD 
formed our test database. The data aggregation represented both 
the source system of patient encounters and its construct, which 
represented patient data collected during the encounter (for 
different encounter types) before patient discharge. At VIHA, and 
its Cerner system, there are hundreds of tables that comprise the 
ADT and all are part of a relational database with primary and 
foreign keys. These keys are important for data integrity that link 
clinical events for that patient only. Therefore, it was necessary to 
use constraints in emulating data for the noSQL database.  

Hadoop/MapReduce framework proposed to implement the 
BDA platform and analyze emulated patient data over a distributed 
computing system is net new to acute patient care settings at VIHA 
and other health authorities in Canada. Innovative technologies 
from Hadoop’s ecosystem with MapReduce programming, and a 
NoSQL database, called HBase were utilized to form a complex 

database construct. HBase is an open-source, distributed key-value 
(KV) store based on Google’s BigTable [55] ─ persistent and 
strictly consistent NoSQL system using HDFS for data storage. 
Furthermore, with all these technical components to construct the 
platform, the build also took into account the workflow by clinical 
reporting workgroups with the same metadata from hospital 
datasets. 

2.3 Data Generation 

To generate accurate representations of patient records, we 
originally constructed the emulated database in Oracle Express 
11g using SQL to establish the column names and metadata using 
constrained data profiles for each randomized row of dummy 
patient data. For example, data for the diagnostic column was ICD-
10-CA codes and set that data to those standardized characters. The 
data was populated for each column based on a list of metadata set 
in the script to generate for each of the columns. Furthermore, 
important data profiles and dependencies established through 
primary keys over selected columns. Ninety columns from DAD 
and ADT were eventually established, generated, and ingested into 
the HBDA platform. Since data warehouse team working with 
health professionals for clinical reporting relies on comma-
separated value (CSV) formats when importing and exporting their 
data, we opted to use the ingested CSV files directly for analytics 
instead of HBase. This was carried out previously on our platform 
using Apache Phoenix and its SQL-like code on HBase [51, 56]. 
Two data sizes of 50 million and one billion records established a 
benchmark check on how different packages (Apache Spark and 
Drill) scaled with data size with an additional three billion tested. 

2.4 Infrastructure 

Using existing computational resources and architecture was 
an essential requirement. We relied on the existing WestGrid 
clusters at UVic to run the platform. Among ~500 nodes available 
on the WestGrid clusters hosted at UVic, we planned to use as 
many nodes as possible while benchmarking and testing 
scalability. Currently, we only used six dedicated nodes due to 
configuration issues and ongoing maintenance. Local disks had 
6TB per node that then could reach ten billion records at this 36TB 
storage to illustrate operational platform. The PBS/Torque 
resource manager managed the clusters that allowed access to 
launch our interactive Hadoop/HBase jobs and modules for 
Apache Spark/Drill while loading Jupyter Notebook or Zeppelin 
on those nodes. The nodes had 12 cores, 24GB and three 2TB-
disks each, and were similar in technical specification to the 
existing servers at VIHA. Thus, comparisons could be made with 
VIHA based on Westgrid’s high performance supercomputing 
(HPC), referred to architectural and technical specifications for 
more details [51]. 

Given that the WestGrid clusters are traditional HPC clusters, 
we had to customize our setup scripts to launch a dynamic HBDA 
platform that runs when the job starts and terminates when the job 
finishes. This allows our HBDA platform to exist within an HPC 
cluster and thus eliminate special treatment to the environment 
with extending the job wall-time when necessary. 

2.5 Big Data Analytics (BDA) and Visualization 

After interviews with different VIHA stakeholders, identified 
requirements applied to our proof-of-concept and visualization 
simulation: interactive, simple, SQL-like, and visualization-
enabled interface. Moreover, the platform should be able to offer 
the necessary tools to implement new analyses and act as an expert 
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system when needed; this was required because clinicians were 
interested in answering specific scenarios. An example of a 
scenario was: 

“Clinicians suspect that frequent movement of patients within the 
hospital can worsen outcomes. This is especially true of those who are 
prone to confusion (or mental relapse) due to physical and environmental 
changes in their current state that can exacerbate the confusion. If this 
occurs, a physician may attribute their confusion to the possible onset of 
an infection, a disease or a mental illness, resulting in unnecessary 
laboratory tests and medications. Moreover, by moving to a new location, 
new healthcare workers may detect subtle changes in a patient’s mental 
baseline and frequent patient movements can cause sepsis onset.” 

For the HBDA platform to be successful it should process 1) a 
large number of patient records (data space) over a wide range of 
computationally intensive algorithms (algorithmic space); as well 
as 2) to easily generate visualizations (visualization space); 3) offer 
libraries; and, 4) application tools (tool space) to support these four 
spaces. Deploying our platform covered all the four of these spaces 
while being interactive was challenging. In previous study [51, 
54], we reported that Hadoop, HBase, and Apache Phoenix 
provided an excellent platform to perform SQL-like queries with 
high performance and accurate patient results. However, the 
ingestion of one billion records from Hadoop HFiles bulkloaded to 
HBase (indexed files) took weeks, while three billion took over 
two months on the infrastructure before finalizing the 
configurations. Moreover, SQL-like queries and tools were only a 
small fraction of the interest and importance mentioned by 
stakeholders, who included other factors of their workflow and 
professional consideration like algorithmic, tool, visualization 
spaces (e.g., epidemiology versus hospitalization reporting). In our 
simulation, therefore, we expanded on those spaces that our first 
article of Hadoop and HBase did not investigate with three-nine 
billion records while using Zeppelin and Jupyter with Spark and 
Drill’s separate interface at various testing. Moreover, we 
investigated SQL-like capabilities of Spark and SQL-ANSI of 
Drill on CSV files indexed by HBase compared to Phoenix on 
HBase. 

The data construction framework used by this study extracted 
the appropriate data profiles from the data dictionaries and data 
standard definitions for the ADT system and DAD abstract manual 
[57]. The data used to test performance was circumvented with the 
interviews with different VIHA stakeholders, several requirements 
and scenarios, and 17 clinical cases were outlined that were 
identified for a realistic proof-of-concept BDA and data 
visualization: the interface should be interactive, simple, ANSI-
SQL or SQL-like, and visualization enabled/embedded in the 
browser. Moreover, the platform should be able to offer the 
necessary tools to implement newly advanced analytics to act as a 
recommendation of an expert system; this is required, as clinicians 
are interested in answering specific scenarios of inpatient 
encounters with accurate data. 

2.6 Testing & Evaluation 

The functional platform tested performance of data migrations 
or ingestions of HFiles via Hadoop (HDFS), bulkloads of HBase, 
and ingestions of HFiles to Apache Spark and Apache Drill. Test 
speed of performance to complete ingestion or queries were proof-
of-concept testing using simulated data with the same replicated 
metadata and very large volume, but this did not consist of 
comparing performance of SQL (relational database) with NoSQL 
or different data models with real patient data. The SQL can be 
very similar with real data but cannot be compared at this time. 

Furthermore, the bulk of the methodology is generating the 
emulated data and queries with Hadoop configurations and other 
software, i.e., HBase, Spark and Drill. Most of the configurations 
established after installing the components, which were defaulted 
for the distributed filing and MapReduce in Java, Python and Scala 
to perform as expected; therefore, the platform established by 
Hadoop-MapReduce configurations to run and integrate with all 
other big data tools. 

For SQL-like analytics, to test and evaluate Zeppelin versus  
Jupyter with Spark and SQL-ANSI with Drill, we selected 22 SQL 
query tests based on the interviews conducted and same as 
published in Chrimes et al., [51]. Eventhough the queries had 
different level of complexity; our performance results showed that 
all had similar times to generate the patient results or reports. An 
example of SQL statements used to test system was: 

SELECT Count(Episode_Duration) as EDCount, 
Count(Anesthetistic_Technique) as ATCount, 
Count(Interven_Location) as ILCount, 
Count(Medical_Services) as MSCount, 
Count(Unit_Transfer_Occurrence) as UTOCount FROM 
DADS1 where EncounterID<1000 Group By age; 

For other kinds of analytics, especially the machine learning 
algorithms, we performed simple tasks such as computing the 
correlations between different pairs of columns, such ‘age’ and the 
‘length of stay at the hospital’ or LOS, as well as simple clustering. 
The data was synthetic or emulated; therefore, using machine 
learning to answer intelligent scenarios or find interesting patterns 
were only applied narrowly to find randomized patterns of the 
health outcome parameters that was already known. Nevertheless, 
its configurations and performance was ultimately the information 
attained towards using real patient data over our HBDA. 

For visualization, we utilized the common set of graphs that 
healthcare providers would use to generate such reporting as table, 
pie chart, scatter plot, and histogram visualizations. In producing 
each graph and SQL-like query, we recorded and documented all 
processes and connectivity times.  

3. Implementation of HBDA Platform  

3.1. Overview of High Performance System(s) 

The beauty of a BDA platform with open-source software in 
Hadoop’s ecosystem is that there are a wide range of tools and 
technologies for bulkloading and accessing large datasets from 
different sources. Sqoop, for example, is useful to ease the transfer 
between existing relational databases and a BDA platform [36]. 
For collecting and gathering unstructured data, such as logs, one 
can use Flume. Since the performance tests of queries on the 
platform relied on data emulation, it was used, as a proof-of- 
concept, the usual high-speed file transfer technologies (such as 
SCP and GridFTP) to transfer data to the HPC parallel file system 
(GPFS). It was then used the Hadoop and HBase as NoSQL 
database bulkload utilities to ingest the data. 

The established BDA platform will be used to benchmark the 
performance of end users’ querying of current and future reporting 
of VIHA’s clinical data warehouse (i.e., in production at VIHA, 
spans more than 50 years of circa 14 TB). To accomplish this, 
Hadoop environment (including the Hadoop HDFS) from a source 
installed and configured on the WestGrid cluster, and a dynamic 
Hadoop job was launched. Hadoop (version 2.6.0) and its HDFS 
was configured by hdfs-site.xml and a MapReduce frame [26], 
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configured via mapred-site.xml, that was run under the Hadoop 
resource manager Yarn (with configuration file yarn-site.xml). The 
number of replicas was set to three. To interact with HDFS, 
command scripts were run to automate the ingestion step (generate 
data replication in the exact format specified by SQL script to the 
nodes). 

The BDA platform was built on top of the available open-
source database software (HBase). HBase (NoSQL version 
0.98.11) is a NoSQL database composed of the main deployment 
master (DM) and fail-over master, the RegionServers holding 
HBASE data, and ZooKeeper, which contained services to allocate 
data locality [28], of three nodes, that orchestrated that ensemble. 
The xml configuration files were HBase-site.xml and the HBase-
env.sh adjusted to improve the performance of HBase. HBase was 
chosen due to its NoSQL services and many other features, 
especially linear and modular scalability. In addition, it allows for 
SQL-like layers via Apache Phoenix configured on top of HBase 
big-tables. 

The construction and build of the framework with HBase 
(NoSQL) and Hadoop (HDFS) coincided with and enforced by the 
existing architecture of the WestGrid clusters at UVic (secure login 
via LDAP directory service accounts to deployment database 
nodes and restricted accounts to dedicated nodes). The data were 
distributed in parallel on the nodes via a balanced allocation to 
each local disk with running part of the batch jobs in a serial 
computing process. Deployment of the Hadoop environment on 
the nodes was carried out via a sequence of setup scripts that the 
user calls after loading the necessary modules. These setup scripts 
create an initial configuration depending on the number of nodes 
chosen when launching the job. The user can adjust those 
configurations to match the needs of the job and its performance. 

Making the DBA platform InfiniBand-enabled was 
challenging, as most of the Hadoop environment services rely on 
the hostname to get the IP address of the machine. Since the 
hostnames on a cluster are usually assigned to their management 
network, the setup scripts and the configuration files required 
adjustment. The InfiniBand was used because it offers low latency 
(in us) and high bandwidth (~40Gb/s) connectivity between the 
nodes. Yarn, Hadoop’s resource and job manager [33], 
unfortunately still partly used the Gig-Ethernet interface when 
orchestrating between the nodes, but the data transfer was carried 
out on the InfiniBand. 

The bulk of the framework was comprised of open-source 
packages of Hadoop’s ecosystem. Even though several 
configurations were done to the Hadoop ecosystem to optimize 
running on the WestGrid dedicated cluster, no hardware 
modification was needed; possible future changes could be made 
to meet minimum recommended RAM, disk space, etc. 
requirements per node, e.g., refer to guidelines via Cloudera [58]. 
Hadoop provides the robust, fault-tolerant HDFS inspired by 
Google’s file system [55], as well as a Java-based API that allows 
parallel processing across the nodes of the cluster using the 
MapReduce paradigm. The platform was used in Python with Java 
to run jobs and ingestions. Hadoop comes with Job and Task 
Trackers that keep track of the programs’ execution across the 
nodes of the cluster. These Job and Task Trackers are important 
for Hadoop to work on a platform in unison with MapReduce and 
other ingestion steps involved with HBase, ZooKeeper, Spark, and 
Drill. There have been many contributors, both academic and 
commercial (Yahoo being the largest), to using Hadoop over a 

BDA platform, and a broad and rapidly growing user community 
[59]. 

The software stack used in the platform has at its bottom is 
HDFS (Figure 4). HDFS is the distributed file system of Hadoop 
and known to scale and perform well in the data space. Yarn was 
the resource manager of Hadoop and services of scheduling 
incongruent to running the Hadoop jobs. In addition to MapReduce 
component, Yarn, and HDFS constitute the main components [59]. 
In our platform, we built, configured and tested different versions 
of Hadoop, and managed the version via its respective module 
environment packages. The following module command lists all 
the available Hadoop versions: 
$module avail Hadoop 

Hadoop/1.2.1(default)Hadoop/2.2.0Hadoop/2.6.0 
Hadoop/2.6.2 

For our study, we used Hadoop2.6.2 with replication set to 
three in all our runs. Instead of using the MapReduce as our main 
service for the algorithmic space, we chose Apache Spark, as it 
covers larger algorithmic and tool spaces and outperforms 
Hadoop’s MapReduce to HBase as bulkload. 

eeper is a resource 
allocator; Yarn is resource manager; HDFS is Hadoop Distributed File System; 
HBase is noSQL database; Phoenix is Apache Phoenix (query tool on HBase); 
Spark is Apache Spark (query tool with specialized Yarn); Drill is Apache Drill 
(query tool with specialized configuration to Hadoop via ZooKeeper); and Zeppelin 
and Jupyter are interfaces on local web hosts (clients) using Hadoop ingestion and 
Spark module. 

The queries via Apache Phoenix (version 4.3.0) resided as a 
thin SQL-like layer on HBase.  This allowed ingested data to form 
structured schema-based data in the NoSQL database. Phoenix can 
run SQL-like queries against the HBase data. Similar to the HBase 
shell, Phoenix is equipped with a python interface to run SQL 
statements and it utilizes a CSV file bulkloader tool to ingest a 
large flat file using MapReduce. The load balancing between the 
RegionServers (e.g., “salt bucket”) was set to the number of slaves 
or worker nodes that allowed ingested data to be balanced and 
distributed evenly. The pathway to running ingestions and queries 
from the build of the BDA platform on the existing HPC was as 
follows:  CSV flat files generated  Module Load  HDFS 
ingestion(s)  Bulkloads/HBase  Apache Phoenix Queries. 
Under this sequence, the Apache Phoenix module loaded after 
Hadoop and HBase SQL code was directed and then iteratively run 
to ingest 50 million rows to the existing NoSQL HBase database 
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(see Results for details). This pathway was tested in iteration up to 
three billion records (once generated) for comparison of the 
combination of HBase-Phoenix versus Phoenix-Spark or an 
Apache Spark Plugin [60]. 

After the metadata, used in the emulated database, was verified 
from the existing relational database, it was established as a 
patient-centric SQL-like queries using Phoenix on top of the non-
relational NoSQL HBase store. To establish data structure, the 
EncounterID was set as a big data integer (so that it can reach 
billions of integers without limitation) and indexed based on that 
integer via HBase for each unique at every iteration that followed. 
This indexed-value column, unique for every row, causes 
MapReduce to sort the KV stores for every one of the iterations 
that can increase the integrity of the data and increase its secured 
access once distributed. Once distributed, this allowed for SQL-
like scenarios to be used in the evaluation of the performance of 
the BDA platform and accuracy of the emulated patient database. 

3.2. Implementation of Apache Spark Technology System 

Apache Spark (version 1.3.0) was also built from source and 
installed to use on HBase and the Hadoop cluster. The intent was 
to compare different query tools like Apache Spark over the BDA 
platform with Zeppelin and Jupyter then cross-compared with 
Drill’s ANSI-SQL and Apache Phoenix using similar SQL-like 
queries. Currently, Apache Spark, its action filters and 
transformations and resilient distributed dataset (RDD) format, is 
at the heart of the processing queries over the platform aligned with 
Hadoop [33]. It covered a substantial data space because it could 
read data from HDFS and HBase. Its speed can be fast because of 
its judicious use of memory to cache the data, because Spark’s 
main operators of transformations to form actions/filters were 
applied to an immutable RDD [32-33]. Each transformation 
produces an RDD that needs to be cached in memory and/or 
persisted to disk, depending on the user’s choice [32, 61]. In Spark, 
transformation was a lazy operator; instead, direct acyclic graphs 
(DAG) of the RDD transformations build, optimize, and only 
executed when action applied [32]. Spark relied on a master to 
drive the execution of DAG on a set of executors (running on the 
Hadoop DataNodes). On top of the Spark transformation engine 
there was a suite of tool space: Spark SQL and data frames, 
Machine Learning Library (MLLib), Graph library (GraphX), and 
many third-party packages. These tools run interactively or via a 
batch job. Similar to Hadoop, all of this software is available 
through the module environments package [54, 61]. Since the 
investigation was for user interactivity and usability the following 
was elaborated on: 

i) Spark terminal is available for users to interact with Spark 
via its terminal. Similar to the usual command line terminals, 
everything displayed as text. For Scala language (Java and 
Python), the user can call spark-shell to get  access  to  the Scala 
(i.e., Python with Java libraries) terminal. For Python, the user 
should run Pyspark (module). For this study’s platform, the scale 
mode of use was only recommended for advanced users. For all 
stakeholders, selecting a terminal is not user-friendly and the 
platform will be viewed as too cumbersome to use; therefore, it ran 
the module in simulation as an administrator with the end user. 

ii) Jupyter notebook is a successful interactive and 
development tool for data science and scientific computing. It 
accommodates over 50 programming languages via its notebook 
web application, and comprises all necessary infrastructures to 
create and share documents, as well as collaborate, report, and 

publish. The notebook was user-friendly and a rich document able 
to contain/embed code, equations, text (especially markup text), 
and visualizations. For utilization, the simultaneous running of all 
queries over the fast ingestion of the entire database was a 
significant achievement. Furthermore, corroboration of the results, 
after selecting a port and local host to run over a browser, started 
from 50 million and extending to three billion records, and 
validated the queries over the time of application to display. The 
existing software installations of Jupyter 4.0.6 on python 2.7.9 
were implemented without customization. 

iii) Zeppelin was another interface used to interact with 
Spark. Zeppelin is a web- based notebook; it is not limited to 
Spark. It supports a large number of back-end processes through 
its interpreter mechanism [32]. In Zeppelin, any other back-end 
process can be supported once the proper interpreter is 
implemented for it. SQL queries were supported via the SparkSQL 
interpreter and executed by preceding the query with a %sql tag. 
What makes Zeppelin interesting, from the HBDA platform 
perspective, was the fact that it has built- in visualizations and the 
user can, after running an SQL query, click on the icons to generate   
the graph or chart. This kind of at-the-fingertip visualization was 
essential for the zero-day or rapid analytics. Spark 1.5.2 and 
Zeppelin 0.6.0 were built from source, configured with a port and 
local host had to run over a browser, and used for the testing and 
benchmarking of the platform. 

3.3. Implementation of Apache Drill Technology System 

Inspired by Google’s big query engine Dremel, Drill offers a 
distributed execution environment for large-scale ANSI-
SQL:2003 queries. It supports a wide range of data sources, 
including .csv, JSON, HBase, etc... [62]. By (re)compiling and 
optimizing each of the queries while it interacting with the 
distributed data sets via the so-called Drillbit service, Drill showed 
capacity of the query with performance at a low latency SQL 
query. Unlike the master/slave architecture of Spark, in which a 
driver handles the execution of the DAG on a given set of 
executors, the Drillbits were loosely coupled and each could accept 
a query from the client [63]. The receiving Drillbit becomes the 
driver for the query, parsing, and optimization over a generated 
efficient, distributed, and multiphase execution plan; it also gathers 
the results back when the scheduled execution is done [19, 63]. To 
run Drill over a distributed mode, the user will need a ZooKeeper 
cluster continuously running. Drill 1.3.0 and ZooKeeper 3.4.6 
were installed and configured on the framework of the platform 
over a port with a local host. 

4. Findings and Significant Benchmarking Results  

4.1. Technical Challenges 

From a technical perspective, very few issues were faced 
during software installation of Spark and Drill. Besides the lack of 
documentation, a major issue with Hadoop’s ecosystem of 
packages was that many of them failed to include the dependencies 
that are local to the system, like with ZooKeeper for Spark and the 
version of Hadoop required with version of Python (Table 2 in 
Appendix). 

To establish the BDA framework with different big data 
technologies, therefore, additional configurations had to be made 
in order to customize the platform without failed services and 
ongoing running of Hadoop at high performance (Figure 5), which 
was required to run ingestions and query. Additionally, for 
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improved efficiency, the platform used native libraries because 
Hadoop needs to be recompiled from source [19, 22, 23, 30, 61, 
63-64]. Compression of HBase store files reduced the performance 
by ~100 minutes from 399 to 299 minutes on average. And it was 
found that many packages do not offer a profile that allowed them 
to be used, as local Hadoop even avoids downloading components. 
Moreover, given that the end users were allowed to run their 
Hadoop module on WestGrid’s clusters. Therefore, it was 
important that the configuration directories had most of the 
Hadoop’s ecosystem of packages built in to minimize reliance on 
them. Unfortunately, the configuration of Hadoop was not 
propagated properly to all the remote services running on the 
nodes, which caused the default configuration on those nodes to be 
used. 

 
Figure 5. A month-to-month varied iteration lengths with 24GB ram consumption 
on Hermes89 node reported from WestGrid showing variation in the duration of the 
ingestion of 50 Million records over each of the iterations over an entire year 
(November 2015 to October 2016), with more activity mid-May to October. The 
graph shows the following cached memory (in blue), active passes (in green), 
buffers (in yellow), as well as active (in pink), minimum required (in red) and 
available memory (black line). 

Four CSV files were ingested to HDFS: 1) one with 10 records 
was used for quick testing; 2) one with 50 million records was used 
for the actual benchmarking; and, 3) another two with one and 
three billion records. The results for 3 billion are shown in Table 3 
(in Appendix) while the other results for 50 million and 1 billion 
were previously published [51]. Furthermore, the results also 
revealed that unbalanced nodes had slower performance compared 
to more balanced nodes (after manually running compression was 
run for 24 hours on HBase store files).  

There is a tool called Hannibal available to check Regions over 
Hadoop/HBase and showed that the five Regions averaged ~1TB 
and this coincided with 176-183 Store files for each (comprised of 
Hadoop’s HFiles) for the entire distributed table (ingested into 
HBase) for three billion records. Total equals 900 Regions and 900 
Store files. The slight imbalance and an initial peak in the sizes 
because compaction was disabled to run automatically (due to 
performance issues) and manually running bot minor (combines 
configurable number of smaller HFiles into one larger HFile) and 
major reads the Store files for a region and writes to a single Store 
file) compaction types. Furthermore, the durations of the iterations 
continued to fluctuate with no distinctive trend for one billion. For 
three billion, at more operational level at high core CPU over May-
October 2016, had similar fluctuations of 299-1600 minutes with 
average of ~300-375 minutes for ingestions and roughly the same 

amount of time for compaction (major and minor) manually run 
before the next ingestion iteration, which accounted for 2 months 
to ingest files to reach three billion. 

Another major challenge faced was that Apache Drill did not 
have any option to force it to bind to a specific network interface. 
As a result, its Drillbits started used the network management 
instead of the InfiniBand network. Zeppelin used databricks from 
Spark to ingest the file that was run over the interface. Similarly, it 
also intermittently occurred when initializing Zeppelin and this 
added an additional 30 minutes to the ingestion and query of 1-3 
billion rows. In addition to having to move from the 0.5.0 version 
(as it did not support Spark 1.5.2) to the latest snapshot (0.6.0), the 
Zeppelin’s Pyspark timed out the first time %pyspark was run. In 
fact, it was found that the user has to wait for a couple of seconds 
and execute the cell one more time to get Pyspark working. 
Another challenge with Zeppelin, even though it offers a pull-
down list of notebooks, was that the notebook could only be 
exported as a JSON file. Saving the notebook as an html page 
produced empty webpages and that exhibited very poor usability. 
Therefore, the Zeppelin notebooks can only be open under 
Zeppelin. There were, however, some off-the-shelf buttons to plot 
data as a data visualization tool for Zeppelin. 

4.2. Data Size and Ingestion Time 

Three CSV files ingested to HDFS: 1) 10 records and was used 
for quick testing, and 2) others used for the actual benchmarking: 
50 million records and the other with one and three billion records. 
Table 4 shows results of ingestion times. 
Table 4. Hadoop ingestion time (minutes) for 50 million to 3 billion records. 

Data Size 
50 Million 
Records  
(23 GB) 

1 Billion 
Records     
(451 GB) 

3 Billion 
Records 
(10 TB) 

 Ingestion 
Time ~6 min ~2 h 5 min ~5 h 2 min 

 
If we set equation (1) Ti ( N ) to be the time to ingest N records, 

then the data ingestion efficiency (IE) for 50 million (50M), one 
billion (1B) and three billion (3B) was  therefore: 

(1) 

 

4.3. SQL Query Results 

The queries were run on Zeppelin, spark-shell, and Pyspark; all 
took approximately the same amount of time. This was not 
surprising, as they all rely on Spark SQL. Therefore, it was only 
reported as a single time for all three. Spark was configured to run 
on a Yarn-client with 10 executors, four cores with 8 GB of RAM 
each; therefore, each node had two executors with a total of eight 
cores and 16 GB memory (tests using one executor with 16 GB 
and eight cores on each node was slightly less efficient).  

The Zeppelin code snippet used was: 
%pyspark 

from time import time t0 = time() 
df=sqlContext.read.format('com.databricks.spark.
csv').option('header','true').option('inferS 
chema','true').load('hdfs://h 
ermes0090:54310/dad/big_dad_all.csv') 
df.registerTempTable('DADS1') df.cache() 
 

𝐼𝐼𝐼𝐼 =  
1(3)𝐵𝐵 × 𝑇𝑇𝑖𝑖(50𝑀𝑀)
50𝑀𝑀 × 𝑇𝑇𝑖𝑖(1(3)𝐵𝐵) = 0.93 
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%sql SELECT Count(Episode_Duration) as 
EDCount, Count(Anesthetistic_Technique) as 
ATCount, Count(Interven_Location) as ILCount, 
Count(Medical_Services) as MSCount, 
Count(Unit_Transfer_Occurrence) as UTOCount from 
DADS1 where EncounterID<1000 Group By age 

Drill was configured to run the Drillbits on the Hadoop 
DataNodes (with a single Drillbit on each node). Each Drillbit was 
configured with a VM heap of 4 GB and a maximum direct 
memory of 16 GB (standard configuration). The queries were run 
from both the web interface of one of the Drillbits and the sqlline 
command line, using the code snippet below as example. Both 
gave the same timing.  

SELECT Count(Episode_Duration) as EDCount, 
Count(Anesthetistic_Technique) as ATCount, 
Count(Interven_Location) as ILCount, 
Count(Medical_Services) as MSCount, 
Count(Unit_Transfer_Occurrence) as UTOCount from 
dfs.`/dad/big_dad_all.csv` where 
EncounterID<1000  Group By age 

The results clearly showed that Drill was five to 7.6 faster than 
Spark, which indeed justified its use as a low latency query-engine 
tool. The Phoenix and HBase benchmarking reported earlier [51] 
showed that HBase outperformed all of them and the HBase 
queries were all within a second or two. This was an astonishing 
performance and HBase was used, when possible, as the 
underlying data source for the HBDA platform. 

It was surprising that the query efficiency (QE) of Drill was 
only 76%. It was believed at the time of running both engines that 
this was due to a lack of binding to the InfiniBand interface. The 
Drill Developers were contacted about this and there was work 
with them to debug for an eventual break fix. Drill’s query 
processes, however, were still not as efficient as that of Spark with 
increased database size to ingest. 

We defined Tq (N) to be the query time and its efficiency (QE) 
in equation (2) for 50 million (50M), one billion (1B) and three 
billion (3B) was defined as: 

(2) 

 

The results of the benchmarking in Table 5 clearly shows that 
Drill was 5 to 7.6 was faster than Spark and indeed justified its use 
as a low latency query engine tool. 

Our Phoenix and HBase benchmarking reported earlier  
showed that HBase outperformed all of them and the HBase 
queries were all within a second or two [51]. These results were 
astonishing and high performance using HBase when possible, as 
the underlying data source for our HBDA platform. Furthermore, 
Spark did show improved query efficiencies from three to six 
billion patient records compared to less relative improvement by 
Drill (Figure 6). 
Table 5. SQL query time (seconds) for 50 million to 3 billion records. 

SQL Engine Spark SQL 
(seconds) 

Drill SQL 
(seconds) 

50 Million Records 194.4 25.5 

1 Billion Records 3409.8 674.3 
3 Billion Records 5213.3 1543.2 

Query Efficiency 1.14-1.52 0.76-0.84 

 
Figure 6. Projected ingestion and query results for 50 million to 6 Billion patient 
records using Apache Spark or Apache Drill Systems. 

4.4. Usability, Simple Analytics and Visualizations 

The results showed that the ingestion time of one billion 
records took circa two hours via Apache Spark. Apache Drill 
outperformed Spark/Zeppelin and Spark/Jupyter. However, Drill 
was restricted to running more simplified queries, and was very 
limited in its visualizations that exhibited poor usability for 
healthcare. Zeppelin, running on Spark, showed ease-of-use 
interactions for health applications, but it lacked the flexibility of 
its interface tools and required extra setup time and 30-minute 
delay before running queries. Jupyter on Spark offered high 
performance stacks not only over the BDA platform but also in 
unison, running all queries simultaneously with high usability for 
a variety of reporting requirements by providers and health 
professionals. 

Being able to perform low latency SQL queries on a data 
source is not enough for healthcare providers, clinicians, and 
practitioners. Interacting with and exploring the data through 
different analytics algorithms and visualizations is usually required 
to get the data’s full value. A variety of functionalities and tools 
for expressing data was an essential quality to test over the 
platform. 

Drill did perform well compared to Spark, but it did not offer 
any tools or libraries for taking the query results further. That is, 
Drill proved to have higher performance than Spark but its 
interface had less functionalities. Moreover, algorithms (as simple 
as correlations between different columns) were time-demanding 
if not impossible to express as SQL statements. Zeppelin, on the 
other hand, offered the ability to develop the code, generate the 
mark-down text, and produced excellent canned graphs to plot the 
patient data. 

Combined with the richness of Spark and Pyspark, Zeppelin 
provided a canned visualization platform with graphing icons. The 
plots under Zeppelin, however, are restricted  to the results/tables 
obtained from the SQL statements. Moreover, algorithms (as 
simple as correlation between different columns) were time 
demanding if not impossible to express as SQL statements. 
Zeppelin, on the other hand, offered the ability to develop the code, 
generate the mark-downed text, and produced excellent canned 
graphs to plot the patient data (Figure 7).  

Combining with the richness of Spark and Pyspark, Zeppelin 
provided a canned visualization platform with graphing icons 
(Figure 8). The plots, however, under Zeppelin were restricted to 
the results/tables obtained from SQL statement. Furthermore, the 
results that we directly produced from Spark SQL context did not 
have any visualization options in Zeppelin. Generating results 

𝑄𝑄𝑄𝑄 =  
1(3)𝐵𝐵 ×  𝑇𝑇𝑞𝑞 (50𝑀𝑀�
50𝑀𝑀 × 𝑇𝑇𝑞𝑞 (1(3)𝐵𝐵�
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from queries via Zeppelin took much longer (over 30 minutes) to 
establish the platform to run queries on the interface compared to 
Jupyter. 

 
Figure 7. A web-based interface for Zeppelin showing embedded queries and the 
results. 

 
Figure 8. An example of visualization and simple correlation analytics results within 
Zeppelin using Pyspark. 

Furthermore, the results that were produced directly from the 
Spark SQL context did not have any visualization options in 
Zeppelin. Generating results from queries via Zeppelin took much 
longer (over 30 minutes). Establishing the platform to run queries 
on the interface and generate results via Zeppelin took longer than 
Jupyter. 

With Jupyter, more configurations with the data queries were 
tested. It exhibited similar code to ingest the file, same Spark 
databricks initialized in the interface and its SQL to query as 
Zeppelin (Figure 9). 

At the expense of writing the visualization code, using the 
matlplotlib Python package in addition to other powerful tools, 
such as Pandas, i.e., a powerful Python data analysis toolkit. The 
local host was added to Hermes node to access Jupyter via the 
BDA platform to compensate for the lack of visualization options 
via the Zeppelin interface. Figure 10 shows a small snippet from 

the output of a Jupyter/Spark interaction that uses both matlplotlib 
and Java’s Pandas. 

 
Figure 9. Spark with Jupyter and loading file before SQL is placed. 

 

Figure 10. A simple Jupyter/Spark interaction on its web-based interface with data 
visualizations using Pandas and graphed results. 

Usability of the platform did validate the proof-of-concept of 
querying patient data with high performance in generating results 
and visualization over the interface. Performance to generate 
results had the same number of sequence steps for the end users as 
HBase, Spark and Drill. 

Running Apache Spark took the same amount of time for 
queries on Zeppelin and Jupyter; however, the initial setup (to start 
the queries) took much longer via Zeppelin than Jupyter. Drill 
seemed to have simplified steps to the setup interface compared to 
Spark and took significantly less time; therefore, it appeared to 
have better usability. Nevertheless, Jupyter supplied more 
visualization defaults and customization than Drill for its 
distributed mode and its interface to run the query where severely 
lacking any visualization. 

Usability testing of our HBDA by health professionals is 
limited in this study. Running modules in sequence from Hadoop 
to Spark or Drill with web clients is too technical for most end 
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users and it would require additional refinements to the interface 
for producing clinical reports. We placed code in both Zeppelin 
and Jupyter Notebooks to run all queries at once over the database 
and Hadoop running. However, the only stakeholders that would 
benefit from this code change or utilization would be the data 
warehouse team. 

5. Discussion  

A Hadoop/MapReduce framework successfully formed our 
HBDA platform for health applications. Very few studies have 
applied big data technologies to patient data of hospital system for 
healthcare applications. Moreover, no studies have tested a 
variety of big data tools in Hadoop’s ecosystem of packages. The 
platform successfully implemented a BDA platform and tested it 
for healthcare applications with moderate resources and able to 
run realistic ANSI-SQL (Drill) SQL-like (Spark) queries on three 
billion records and perform interactive analytics and data 
visualizations. An integrated solution eliminates the need to move 
data into and out of the storage system while parallelizing the 
computation, a problem that is becoming more important due to 
increasing numbers of sensors and resulting data in healthcare. 
Furthermore, usability goals based end user computing of the Big 
Data technologies and leveraging the existing tools from data 
warehouse at a health authority is important to make a stand on to 
use the best Apache tools. In this case, Apache Drill and Spark 
with Zeppelin or Jupyter proved to be an important test over the 
one-three billion records because they had not only different 
performances but also much greater differences in their usability 
during operational simulation. Therefore, our study accomplished 
a working Hadoop ecosystem that is applicable to large volumes 
of patient data.  

The sheer volume of 3 billion indexed and ~9-10 billion 
generated shows that one platform could not only be operational 
and productive for one hospital but many and even at a provincial 
scale in Canada or statewide in other countries. The volume 
achieved at a productive and operational level in our study can 
also further lead to simulations that are more rigorous. Part of the 
established simulations and its representation of health 
informatics metadata were formulated in the formation of NoSQL 
HBase database, as well as the ANSI-SQL (Drill) SQL-like 
(Spark) data queries displaying results. Few studies have 
produced a platform of the NoSQL database that tested ANSI-
SQL and SQL-like data queries of patient data of a hospital 
system and this study adds to big data technologies, data 
simulation and healthcare applications over large volumes. Hence, 
this study achieved the three V’s that define Big Data [4]: high 
performance (velocity) over its generator of detailed data (variety) 
that formed extremely large volumes (volume) significantly 
contributed to ongoing development of Information Management 
and Information Technology (IMIT) in healthcare.  

While ingestions in this study were extremely fast, the 
bulkloads of 50 million rows in iteration to one and three billion 
were slow and took, collectively, one week and up to two months, 
respectively. Ingestions beyond three billion were even slower, 
but these times are as fast as or faster than current data migrations 

(of a similar size) estimated at VIHA. The ingestion times 
achieved required several reconfigurations of HBase and Hadoop 
to increase the time to distribute the data; these involve changes 
in the site, yarn, and RegionServer XMLs. MapReduce was to 
blame for the time needed to ingest 50 million rows varied widely 
(from 2 to 12 hours). The corresponding Java coding, Java Virtual 
Machines (JVMs), and Java services were a performance 
bottleneck, which is common on most platforms [22, 39], 
especially memory loss due to Reducer process of MapReduce 
[65]. This demonstrated operationally that while 
Hadoop/MapReduce did have high performance efficiencies its 
clusters did break that required ongoing maintenance and this is 
common across Hadoop clusters (cf. [66]). However, significance 
of using the MapReduce programming model on top of the 
Hadoop cluster proved a process of large volumes of clinical data 
can be accomplished. More importantly, query times were less 
than two seconds for all queries, which is significantly faster than 
current estimated query times. Since there were no differences in 
query durations observed, and since HBase is linearly scalable, it 
is expected that query durations would decrease with an increase 
in the number of nodes and be within a few milliseconds as nodes 
approached 100, even at ten billion rows.  

Clearly, this study showed that Drill, a software addition to 
Hadoop developed recently in 2015-2016 [62-63], significantly 
outperformed the other Apache tools. Drill outperformed Spark 
and Phoenix in HBase processes before queries generated. 
However, its interface lacked any functionality to customize and 
mine the data, which is what health professionals require (because 
of the complexity of the data and what its clinical reporting should 
reveal). Furthermore, running modules Spark or Drill with web 
clients over Hadoop cluster is far too technical for most end users 
to generate clinical reports. This poor usability contradicts the 
recommendations by Scott [62] in that in most cases Drill should 
be used instead of Spark in this showdown of using SQL over big 
data platforms. Drill had on Drill’s interface to test usability but 
Spark had other interfaces (like Jupyter and Spark), which no 
other studies have produced results on. Furthermore, this study 
provided new insight into more customized Java coding with the 
combination of Jupyter with Spark that enhanced the platform’s 
dynamic interactivity. It is therefore recommended that Spark 
with Jupyter be used with scripted coding to run ingestion and 
queries simultaneously. The code can be placed in both Zeppelin 
and Jupyter Notebooks to run all queries at once over the database. 
However, the only stakeholders that would truly benefit from this 
code change and its utilization would be the data warehouse team. 
Besides, Scott [62] indicated that the battlefield for the best Big 
Data software solutions is between Spark and Drill and that Drill 
can emulate complex data much more efficiently than Spark 
because Spark requires elaborate Java, Python and Scala coding 
to do so. Nonetheless, both Spark and Drill were significantly 
faster than HBase in ingesting files directly into Hadoop via 
Drillbits (Drill) with ZooKeeper and MapReduce, and RRD 
transformations with MapReduce (Spark). In fact, the ingestion 
and queries for both Spark and Drill could be run in sequence 
instead of having to run compaction as well. However, it is 
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difficult to compare since neither Spark nor Drill indexed the files. 
Absence of indexing increases the risk of inaccuracies (even 
though the framework was more fault-tolerant when running 
Spark and Drill). Therefore, the big data tools and inherent 
technologies highly influence the health informatics of the data 
established and resulting data from queries. 

The most impactful technology of the Big Data technical 
components in this study was MapReduce (and Java code therein). 
MapReduce methodology is inherently complex as it has separate 
Map and Reduce task and steps in its default-programming 
framework as this study discovered. This study’s platform was 
highly dependent on the efficiency of MapReduce in ingesting 
files over the six nodes, using this workflow: Input  Map  
Copy/Sort  Reduce  Output similar to a study by Chen, 
Alspaugh, and Katz [67]. The Map part of the platform showed 
high performance but the Reduce took more than tenfold longer 
to complete its schedule; however, once configurations in Yarn, 
ZooKeeper, and others the Reducer optimized at iterations of 50 
million rows. According to blogs and technical resolutions 
involved enabling or disabling services or xml settings over the 
platform as expected to be carried because the system relied 
heavily on InfiniBand (IB) bandwidth at low latency over 
WestGrid nodes. Furthermore, there are known issue with the 
combination of MapReduce to HBase, although studies have 
shown that additional indexing and reduction processes can be 
added and/or modified at the reducer with an advanced 
programming method [22, 23, 39, 68-69]. However, a customized 
reduction at the Reducer level of this platform proved to be 
difficult to overcome and maintain at less than 3 hours for each of 
the iterations at only 50 million rows at file size 258GB. 

The complex nature of HBase means that it is difficult to test 
the robustness of the data in emulations based on real data. This 
complexity somewhat rejects our hypothesis that noSQL database 
accurately simulates patient data. Nevertheless, several steps are 
standardized by hospitals to prepare the DAD database for 
statistical rendering to CIHI. Moreover, the actual columns used 
in this study are similar ones used by VIHA. Additionally, the 
DAD data also makes calculations by add columns in the data 
warehouse. Adding columns to a NoSQL database is much easier 
than adding columns to a SQL relational database, and von der 
Weth and Datta [70] showed good performance of multi-term 
keyword searches over noSQL. Therefore, it is an advantage to 
have a large database with row keys and column families already 
set up; Xu et al., [36] support this, as their middleware ZQL could 
easily convert relational to non-relational data.  

Essentially this study is proposing a row-column key-value 
(KV) model to the data distributed over a customized BDA 
platform for healthcare application. Wang, Goh, Wong, and 
Montana [71] support this study’s claim in their statement that 
NoSQL provided high performance solutions for healthcare, 
being better suited for high-dimensional data storage and 
querying, optimized for database scalability and performance. A 
KV pair data model supports faster queries of large-scale 

microarray data and is implemented using HBase (an 
implementation of Google’s BigTable storage system). The new 
KV data model implemented on HBase exhibited an average 5.24-
fold increase in high-dimensional biological data query 
performance compared to the relational model implemented on 
MySQL Cluster and an average 6.47-fold increase on query 
performance on MongoDB [22].  Freire et al., [40] showed highest 
performance of CouchDB (similar to MongoDB and document 
store model) but required much more disk space and longer 
indexing time compared to other KV stores. The performance 
evaluation found that KV data model, in particular its 
implementation in HBase, outperforms and, therefore, supports 
this studies use of NoSQL technology for large-scale BDA 
platform for a hospital system. HBase schema is very flexible, in 
that new columns can be added to families at any time; it is 
therefore able to adapt to changing application requirements [72-
73]. HBase clusters can also be expanded by adding 
RegionServers hosted on commodity class servers, for example, 
when a cluster expands from 10 to 20 RegionServers, it doubles 
both in terms of storage and processing capacity. Sun [74] lists the 
following notable features of HBase: strongly consistent 
reads/writes; “Automatic sharding” (in that HBase tables 
distributed on the cluster via regions can be automatically split 
and re-distributed as data grows); automatic RegionServer 
failover; block cache and “blooming” filters for high-volume 
query optimization; and built-in web-applications for operational 
insight along with JMX (i.e., Java memory) metrics. However, 
HBase settings had to be purged and cleaned after each of the 
ingestions due to unknown tracers or remnants of transactions that 
then later caused failure, and compaction was run manually to 
improve performance; therefore, robustness of HBase needs 
further investigation.  

The present study showed that performing maintenance and 
operational activities over the platform were essential for high 
availability. Unbalanced ingestions required removing files and 
starting again. Some studies have shown that Hadoop can detect 
task failure and restart programs on healthy nodes, but if the 
RegionServers for HBase failed, this process had to be started 
manually and other studies confirm this problem [37, 39, 75-77]. 
Our study showed that compaction improved the number of 
successful runs of ingestion; however, it did not prevent failure of 
the nodes, a finding that is supported by other studies [23, 24, 31, 
68, 78]. If a node failed, the partly ingested file had to be cleaned 
up, re-run, and re-indexed. The platform, therefore, showed a 
single point of failure. 

Data privacy in healthcare involves restricted access to 
patient data but there are often challenging situations when using 
hospital systems and attempting to find new trends in the data. For 
instance, on one hand there are workarounds to access patient data 
in critical situation like sharing passwords that goes against 
HIPAA and FIPPA Acts [79]. There are strict rules and 
governance on hospital systems with advanced protection of 
privacy of patient data based on HIPAA [80-81] that must take 
into consideration when implementing a BDA platform. It’s 
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processing and storage methods must adhere to data privacy at a 
high level and also the accessibility of the data for public 
disclosure [82-84]. One method of ensuring that patient data 
privacy/security is to use indexes generated from HBase, which 
can securely encrypt KV stores [36, 85-87], and HBase can further 
encrypt with integration with Hive [35]. Scott [62] also stated that 
Drill is already setup for encryption for HIPPA but we did not find 
this out-of-the-box and attempting to encrypt was time consuming. 

There are a large number of developers working on additional 
libraries for Hadoop like Lucene and Blur [38]. For example, 
Hadoop R, in particular, provides a rich set of built-in as well as 
extended functions for statistical, machine learning, and 
visualization tasks such as: data extraction, data cleaning, data 
loading, data transformation, statistical analysis, predictive 
modeling, and data visualization. Also, SQL-like queries can be 
run via Hive as a data warehouse framework for ad hoc querying 
that can be used with HBase, although no real-time complex 
analyses can be performed [35]. More investigation of this study’s 
different libraries of a variety of packages offered in Hadoop’s 
ecosystem (many of have not been used in healthcare applications) 
is crucial to ascertaining the best possible BDA platform. 

Conclusion 

Our HBDA platform showed high performance tested for 
healthcare applications. With moderate resources, we were able 
to run realistic SQL queries on three billion records and perform 
interactive analytics and data visualization using Drill, Spark with 
Zeppelin or Jupyter. The performance times proved to improve 
over time with repeated sessions of the same query via the 
Zeppelin and Jupyter interfaces. An ingesting and using CSV file 
on Hadoop also had its advantages (i.e. simplicity, CSV exports 
and imports commonly carried out in healthcare applications, fast 
ingestion compared to HBase) but was expensive when running 
Spark. Drill offers better low latency SQL engine but its 
application tool and visualization were very limited to 
customization, and, therefore, had lower usability.  Useful 
knowledge gained from this study included the following 
challenges and specific objectives:  

(1) data aggregation – actual storage doubled compared to what 
was expected due to HBase key store qualifiers, Spark and Drill 
had the same procedure to ingest Hadoop file before running SQL 
queries;  

(2) data maintenance – ingestions to the database required 
continual monitoring and updating versions of Hadoop-
MapReduce and HBase with limitations persisting for 
MapReduce (ultimately Java performance in the Reducer) from 
one to three billion;  

(3) data integration –  

i. combination of ADT and DAD possible with simulated 
patient data and followed current clinical reporting but 
required a data model of the row keys and column families and 
this needs to be further tested; 

ii. study’s three billion indexed data at 30TB equalled six 
times more rows than current production and archived at most 
health authorities, which is said to be 500 million rows on 
average for a health authority with up to three billion for the 
entire Province; 

iii. large volumes at different scales, i.e. hospital, health 
authority, Province, and multiple Provinces, can be achieved 
if ADT and DAD can be formed to flat file of CSV format 

iv. data model was only verified via simplified analytical 
queries of simulated data as a benchmark test, but not fully 
integrated to a defined patient data model and health 
informatics. 

(4) data analysis – high performance of 3.5 seconds for three 
billion rows and 90 columns (30TB of distributed files) achieved 
with increasing complexity of queries with high performance of 
Drill to run queries and high usability with customized Spark with 
Jupyter; and 

(5) pattern interpretation of application – randomized patterns 
found via Spark with Jupyter interface; however, health trends 
cannot be found via the application and further investigation 
required using Hadoop’s Machine Learning Libraries (MLLib). 
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Appendix 

Table 1. Literature review of big data technologies using Hadoop with possible applications in healthcare (Yes* or No**). 

Big Data 
Technologies Description Purpose Applied in 

Healthcare* 

Hadoop 
Distributed 
File System 
(HDFS) 

The Hadoop Distributed File System (HDFS) is the place in a Hadoop cluster where you store 
data (Apache Hadoop, 2016). Built for data-intensive applications, the HDFS designed to run 
on clusters.  HDFS optimized for high performance, read-intensive operations, and resilient to 
failures in the cluster. It does not prevent failures, but likely to lose data, because HDFS by 
default makes multiple copies of each of its data blocks [17-18]. 

High capacity, fault 
tolerant, inexpensive 
storage of very large 
datasets [19]. 

Yes* [20-23]  

MapReduce 
MapReduce was the first and is the primary programming framework for developing 
applications in Hadoop. Advanced work in Java to use MapReduce in its original and pure form 
[24]. 

A programming 
paradigm for 
processing big data. 

Yes* [23, 25] 

Hadoop Fully integrated, and linkage between two technologies: HDFS and MapReduce [26]. Processing Yes* [23] 

YARN (Yet 
Another 
Resource 
Negotiator) 

Hadoop resource allocator. It is a resource- management platform responsible for managing 
compute resources in clusters and using them for scheduling of users’ applications [27]. Works 
efficiently and easy configure with Apache Spark. 

Resource allocator Yes* [23] 

ZooKeeper 

Hadoop and HDFS are effective tools for distributing work across many machines. ZooKeeper 
is not intended to fill the space of HBase or any other big data key-value store. In fact, there are 
protections built into ZooKeeper to ensure that folks do not attempt to use it as large data store. 
ZooKeeper is, however, just right when all you want to do is share a little bit of information 
across your environment [28]. Works efficiently with Apache Drill. 

Coordination Yes* [23] 

HBase 

HBase is a NoSQL database system included in the standard Hadoop distributions. It is a key-
store, logically.  This means that rows are defined by a key, and have associated with them a 
number of bins (or columns) where the associated values are stored [29]. The only data type is 
the byte string. Physically, groups of similar columns are stored together in columns families. 
Most often, HBase is accessed via Java code, but APIs exist for using HBase with Pig, Thrift, 
Jython (Python based), and others. HBase is not normally accessed via MapReduce but is 
configurable. It does have a shell interface for interactive use. 

NoSQL database 
with random access Yes* [26, 30-31]  

Spark 
MapReduce is the primary workhorse at the core of most Hadoop cluster. While highly 
effective for very large batch-analytic jobs, MapReduce has proven to be suboptimal for 
applications like graph analysis that require iterative processing and data sharing. Three core 
areas: 1) resilient distributed dataset (RDD), transformation, and action [32].  

Processing\storage No** 

Spark SQL Spark outperforms Hive [33]. Easier to configure and less dependent on MapReduce and 
Indexing. 

SQL access to 
Hadoop data No** 

Hive 
The goal of Hive is to allow SQL access to data in the HDFS [34]. The Apache Hive data-
warehouse software facilities querying and managing large datasets residing in HDFS. Hive 
defines a simple SQL-like query language, called HQL that enables users familiar with SQL to 
query the data [35]. 

Data Interaction No** [36] 

Cassandra 
Key-value datastores are a common fixture in any big data system because they are easy to 
scale, quick, and straightforward to work with. Cassandra is a distributed key-value database 
designed with simplicity and scalability in mind [37]. 

Key-value store No** [22] 

Apache Solr 
While Solr is able to use the Hadoop Distributed File System to store data, it is not truly 
compatible with Hadoop and does not use MapReduce or Yarn to build indexes or respond to 
queries. There is a similar effort named Blur to build a tool on top of the Lucene framework that 
leverages the entire Hadoop stack [38]. 

Document 
Warehouse No** 

Lucene and 
Blur 

Blur is a tool for indexing and searching text with Hadoop. Because it has Lucene (a very 
popular text-indexing framework) at its core, it has many useful features, including fuzzy 
matching, wildcard searches, and paged results. It allows you to search through unstructured 
data in a way that would otherwise be very difficult. 

Document 
Warehouse 

No, not in healthcare 
but development and 
patents** [38] 

MongoDB 
MongoDB is a document-oriented database, the document being a JSON object. In relational 
databases, you have tables and rows. In MongoDB, the equivalent of a row is JSON document, 
and the analog to a table is a collection, a set of JSON documents [39]. 

JSON document- 
oriented database Yes* [26, 40] 

JSON JSON is becoming common in Hadoop because it implements a key-value view of the world. Data description and 
transfer Yes* [22]  

Oozie Hadoop’s workflow scheduler [17]. A workflow scheduler to manage complex multipart 
Hadoop jobs. Task scheduler  No** 

Pig 
Pig is translated or compiled into MapReduce code and well optimized so that a series of Pig 
statements do not generate mappers and reducers for each statement and then run them 
sequentially [41]. 

High-level data flow 
language for 
processing data. 

No** 

Storm 
Many technologies in the big data ecosystem, including Hadoop MapReduce, are built with 
very large tasks in mind. These systems are designed to perform work in batches, bundling 
groups of smaller tasks into larger tasks and distributing those large tasks [39]. 

Streaming ingest. Yes* [42-43] 
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Table 2. Operational experiences, persistent issues and overall limitations of big data technologies and components that impacted the Big Data Analytics (BDA) platform. 

Technology 
and 

Component 
Brief Experience Issue and Limitation Impact to Platform 

Hadoop 
Distributed File 
System (HDFS) 

Each node requires configuration 
and monitoring, distributed filing 
system is unbalanced and local 
disks will not fail over via Hadoop.  
If the local disks differed in size 
500GB versus 1TB versus 2TB, 
once full capacity hit, HDFS would 
crash. 

Files need to be distributed with 
relatively the same. The local 
disks reaches max 90% and 
should re- distribute via inherent 
HDFS’s processes but did not 
quickly re-balance. WestGrid’s 
failover to disks doesn’t work 
because Hadoop is moving the 
files to re-balance the nodes. No 
failover for Hadoop from full 
disks to available (also issue with 
WestGrid). 

Did not reconfigure more than 6 nodes 
because very difficult to maintain and 
ongoing issues. If one unbalanced then it will 
either drastically slow the Reducer or it will 
be in quasi un-processing state with 
constantly moving files. Had to add additional 
2- 4TB of local disks because issue persisted 
with running to 3 billion. Impact was on 
database ingestion inoperable and need to 
cleared and restarted. Had to implement large 
local disks of all the same size to avoid 
Hadoop HDFS crash. 

MapReduce 

Map component was extremely fast 
at 3-12mins for each of the 
iterations. Reduce can start at 10-
40% during the Map and this 
variation was not controllable. 
Reducer hits 99% after 12 hours 
and crashes. Optimized iterations at 
50 million rows as it took long to 
run for 100 million and more 
difficult to monitor. 

Reducer fails and ingestion needs 
to be cleared from nodes and 
module load restarted. Reducer 
was extremely slow. Reducer was 
placing the files only on one 
node. 

Totally failed ingestion and system 
inoperable. Indexed files need to be removed 
from node and restarted to complete the 
iteration. Extremely slow performance to 
form the database and requires constant 
monitoring. Current major limitation and 
more advanced algorithms and the java. 
Coding for MapReduce needs to be further 
explored, verified and implemented. 

HBase 

All five RegionServers need to run 
in unison otherwise unbalanced 
HDFS and poor performance. 
InfiniBand not always accessed by 
RegionServer. HBase qualifiers and 
key stores influencing the Reduce 
part at each of the iterations the key 
store had to be re- indexed. 

There is an error message via a 
customized script when restarting 
the bulkload to HBase but 
sometimes the Reducer will place 
the data on the ones available 
even though it should stop. 
RegionServers slow or killed 
because of lack of connectivity. 
RegionServers constantly died 
but resolution was to run 
compaction after ingestion. 
HBase cannot re- index data from 
either HFiles that crashed and 
didn’t complete at any Reducer 
level, even at 99-100%. 

RegionServers were required for the ingestion 
to form the database, without them it was not 
operational. Ongoing monitoring and log 
checking if the RegionServers were down or 
not connected to InfiniBand. The script to 
prompt user that 5 RegionServers dead 
provided better usability as finding the log 
files was tedious work and time consuming. 
Run compaction with shell script after each 
iteration to HBase. It ran only 50 million 
because indexing could fail at larger amount. 
It was easier to clean and restart than at 100 
million rows. If index failed or space on local 
disk maximized, had to re-run all HFiles to 
bulkload via MapReduce to HBase again. 
Each iteration set to start + 1 from the last and 
this setting was manually done. 

ZooKeeper and 
Yarn 

ZooKeeper services need to be 
ongoing and configuration done for 
InfiniBand in its relation to 
RegionServers. 

ZooKeeper not allocating and/or 
slow. 

Extreme slow performance when ZooKeeper 
services were not running properly but 
additional configuration minimized this 
limitation with few issues thereafter. 

Phoenix 
Length of columns too long and 
need to be matching in the schema 
and on the distributed nodes. 

Extremely slow performance in 
ingesting the files of column 
names are more than 12 
characters. Queries will return an 
error if the column names do not 
match. 

Maintain a database schema with current 
names in a file on the nodes such that if the 
files ingested don’t match it will show error 
and to verify while running queries. Zero 
times this occurred while ingesting files but 
many times when running queries. 

Spark Relies on Yarn and advanced Java 
Programming. 

Yarn not allocating and slow 
process, and more java code 
(Scala) required. 

Potential slow performance if not coded 
correctly. Valid online code. sources. 

Spark with 
Zeppelin 

30min delay to run the SQL-like 
script in its initial additional 
ingestion, SQL-like code is more 
complicated than traditional SQL. 

30min delay to start testing or 
running queries. 

30minute delay before running queries, which 
takes the same amount of time as with 
Jupyter. Currently, no fix to this issue. 

Spark with 
Jupyter 

Need to perform some Java coding 
to produce graphs. 

No graphs produced and no 
buttons on interface available like 
Zeppelin. 

Once the Java was established it has high 
usability and excellent performance. 

Drill Can only plugin one SQL code at a 
time, and relies on ZooKeeper 

Poor usability, ZooKeeper not 
allocating and slow. 

Extremely fast but poor usability interfaces.  
It was recently developed as net new version 
so better interfaces are forthcoming or at least 
improved changes to integration with other 
interface engines. 
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Table 3. Duration (seconds) of queries run by Apache Phoenix over 3 Billion with unbalanced* and balanced* HBase NoSQL datasets across Hadoop nodes. 

Description Type Apache Phoenix SQL-like Query 
Output 
Efficiency 
(OE) 

Output 
Efficiency 
(OE) 

      *unbalanced 
(seconds) 

**balanced 
(seconds) 

#1. Basic selection of 
encounter data Simple select * from DADS1 where EncounterID<10010 and 

EncounterID>10004; 3.87 3.05 

#2. Basic selection of 
encounter data based on 
admitted via ambulance 

Simple select * from DADS1 where EncounterID<10010 and 
EncounterID>10004 and ADMIT_BY_AMBULANCE ='C'; 3.65 1.65 

#3. Frequency of Diagnosis 
(Dx) Code with LOS Simple 

select Diagnosis_Code, COUNT (Diagnosis_Code), 
AVG(LOS) from DADS1 where EncounterID<1000100 and 
EncounterID>1000000 GROUP BY Diagnosis_Code; 

3.11 2.11 

#4. Frequency of Diagnosis 
(Dx) Code with Diagnosis 
and LOS 

Simple 
select Diagnosis_Code, COUNT (Diagnosis_Code) as 
Frequency, LOS from DADS1 where 
EncounterID<1000100 and EncounterID>1000000 GROUP 
BY Diagnosis_Code, LOS; 

3.32 2.32 

#5. Diagnosis Code with 
Discharge date and 
Discharge time 

Simple 
select Diagnosis_Code, Discharge_Date, 
Discharge_Time from DADS1 where 
EncounterID<1000010 and EncounterID>1000005; 

3.02 1.02 

#6. Diagnosis Code with 
Unit Transfer Occurrence Simple 

select Diagnosis_Code, COUNT (Diagnosis_Code), 
AVG(Unit_Transfer_Occurrence) from DADS1 where 
EncounterID<1000100 and EncounterID>1000050 GROUP 
BY Diagnosis_Code; 

3.67 1.67 

#7. Diagnosis Code with 
Location building, Location 
Unit, Location Room, 
Location Bed, Discharge 
Disposition 

Simple 
select Diagnosis_Code, Location_Building, 
Location_unit, Location_Room, Location_Bed, 
Discharge_Disposition from DADS1 where 
EncounterID<1000010 and EncounterID>1000000; 

3.23 0.98 

#8. Diagnosis Code with 
Encounter Type and LOS Simple 

select Diagnosis_Code, Encounter_Type, LOS from 
DADS1 where EncounterID<1000010 and 
EncounterID>1000000; 

3.01 0.98 

#9. Diagnosis Code with 
Medical Services and LOS Simple 

select Diagnosis_Code, Medical_Services, LOS from 
DADS1 where EncounterID<1000010 and 
EncounterID>1000000; 

3 1.02 

#10. Provider Service with 
Diagnosis codes Simple 

select Diagnosis_Code, Provider_Service from 
DADS1 where EncounterID<1000010 and 
EncounterID>1000000; 

3.52 1.92 

#11. Highest LOS for 
MRNs with Admit date Simple 

select LOS, MRN, Admission_Date from DADS1 where 
EncounterID<1000100 and EncounterID>1000050 GROUP 
BY LOS, MRN, Admission_Date ORDER BY LOS DESC; 

3.62 1.62 

#12. Frequency (or number) 
of Admit_category with 
Discharge_Date 

Simple 
select Admit_Category, COUNT (Admit_Category) as 
Frequency, Discharge_Date from DADS1 where 
EncounterID<1000100 and EncounterID>1000050 GROUP 
BY Admit_Category, Discharge_Date; 

3.54 1.89 

#13. Admitted by 
Ambulance, Interventions, 
and Medical Services with 
Diagnosis 

Complex 

select Gender, COUNT (Admit_by_Ambulance), COUNT 
(Discharge_Disposition), COUNT 
(Interven_Occurrence), COUNT (Medical_Services), 
COUNT (Diagnosis_Code), MAX(LOS) from DADS1 where 
EncounterID<1000010 and EncounterID>1000000 GROUP 
BY Gender; 

3.67 1.89 

#14. Intervention and 
Location with Admit and 
Location 

Complex 

select Interven_Occurrence, 
Interven_Episode_St_Date, Interven_Location, 
Interven_Episode_Start_Dat e, 
Interven_Attribute_Location, Admission_Time, 
Location_Unit, Location_Bed, Location_Building 
from DADS1 where EncounterID<1000010 and 
EncounterID>1000000; 

3.03 1.87 

#15. Medical Services with 
Unit Transfer Occurrence Complex 

select Count (Episode_Duration), Count 
(Anesthetistic_Technique), 
Count(Interven_Location), 
Count(Medical_Services), Count 
(Unit_Transfer_Occurrence) from DADS1 where 

3.47 1.92 
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EncounterID<1000010 and EncounterID>1000000 Group 
BY age; 

#16. Admit Category and 
Discharge with Transfer Complex 

select LOS, Count(Discharge_Disposition), 
Count(Most_Responsible_Si te), 
Max(Transfer_In_Date), Min(Transfer_Out_Date), 
Max(Transfer_Hours), Max(Days_In_Unit), 
Count(Patient_Service), Max 
(Patient_Service_Occurrence) from DADS1 where 
EncounterID<1000010 and EncounterID>1000000 GROUP 
BY LOS; 

3.61 1.75 

#17. Encounter, Discharge 
and Transfer Complex 

select Diagnosis_Code, Encounter_Type, LOS, 
Admit_Category, Discharge_Date, Discharge_Time, 
Location_Building, Location_Unit, Location_Bed 
from DADS1 where EncounterID<1000010 and 
EncounterID>1000000 ORDER BY Diagnosis_Code DESC; 

3.56 1.53 

#18. Medical Services and 
Days in Unit Complex 

select Patient_Service_Days, 
Patient_Service_Occurrence, Transfer_In_Date, 
Transfer_Out_Date, Days_In_Unit, 
Medical_Services, Location_Unit from DADS1 where 
EncounterID<1000010 and EncounterID>1000000; 

3.72 2.34 

#19. Admission, Transfer 
with Intervention and 
Encounter 

Complex 

select LOS, Count(MRN), Count(Admission_Date), 
Count(Admission_Time), Max(Institute_From), 
Count(Admit_Category), Count(Encounter_Type), 
Count(Entry_Code), Count(Diagnosis_Code), 
Max(Interven_Episode_St_ Date), 
Count(Interven_Attribute_Extent) from DADS1 where 
EncounterID<1000010 and EncounterID>1000000 and 
LOS BETWEEN 0 AND 9999 GROUP BY LOS ORDER BY LOS 
DESC; 

3.82 3.02 

#20. Frequency (or number) 
of Admit_Category with 
Patient Service 

Complex 

select Admit_Category, 
AVG(Patient_Services_Occurrence), COUNT 
(Patient_Service_Type), MAX(Transfer_In_Date), 
MAX(Transfer_Out_Date), Count 
(Transfer_Nursing_Unit), 
Count(Service_Nursing_Area), 
Count(Medical_Services), Count(Encounter_Type), 
Count(Diagnosis_Type), count(Location_Unit), 
count(Provider_Service) from DADS1 where 
EncounterID<1000010 and EncounterID>1000000 GROUP 
BY Admit_Category, Discharge_Date; 
Admit_Category, Discharge_Date; 

3.86 2.61 

#21. Provider Occurrence 
with Nursing Complex 

select Provider_Service, Provider_Type, 
Diagnosis_Code, Provider_Occurrence, 
Transfer_Nursing_Unit, Medical_Services from 
DADS1 where EncounterID<1000010 and 
EncounterID>1000000; 

3.78 1.7 

#22. Provider with 
Diagnosis and Intervention Complex 

select Provider_Service, Provider_Type, 
Provider_Occurrence, Diagnosis_Code, 
Diagnosis_Type, Medical_Services, 
Unit_Transfer_Occurrence, Interven_Code, 
Interven_Occurrence, Interven_Provider_Service, 
Interven_Episode_St_Date, 
Interven_Attribute_Extent from DADS1 where 
EncounterID<1000010 and EncounterID>1000000; 

3.86 1.71 
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