

www.astesj.com 23

Operational Efficiencies and Simulated Performance of Big Data Analytics Platform over Billions of
Patient Records of a Hospital System

Dillon Chrimes1*, Belaid Moa2, Mu-Hsing (Alex) Kuo3, Andre Kushniruk3

1Database Integration and Management, Quality Systems, Vancouver Island Health Authority, V8R1J8, Canada

2Compute Canada/WestGrid/University Systems, Advanced Research Computing, University of Victoria, V8P5C2, Canada

3School of Health Information Science, Faculty of Human and Social Development, University of Victoria, V8P5C2, Canada

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 30 November, 2016
Accepted: 12 January, 2017
Online: 28 January, 2017

 Big Data Analytics (BDA) is important to utilize data from hospital systems to reduce
healthcare costs. BDA enable queries of large volumes of patient data in an interactively
dynamic way for healthcare. The study objective was high performance establishment of
interactive BDA platform of hospital system. A Hadoop/MapReduce framework was
established at University of Victoria (UVic) with Compute Canada/Westgrid to form a
Healthcare BDA (HBDA) platform with HBase (NoSQL database) using hospital-specific
metadata and file ingestion. Patient data profiles and clinical workflow derived from
Vancouver Island Health Authority (VIHA), Victoria, BC, Canada. The proof-of-concept
implementation tested patient data representative of the entire Provincial hospital systems.
We cross-referenced all data profiles and metadata with real patient data used in clinical
reporting. Query performance tested Apache tools in Hadoop’s ecosystem. At optimized
iteration, Hadoop Distributed File System (HDFS) ingestion required three seconds but
HBase required four to twelve hours to complete the Reducer of MapReduce. HBase
bulkloads took a week for one billion (10TB) and over two months for three billion (30TB).
Simple and complex query results showed about two seconds for one and three billion,
respectively. Apache Drill outperformed Apache Spark. However, it was restricted to
running more simplified queries with poor usability for healthcare. Jupyter on Spark
offered high performance and customization to run all queries simultaneously with high
usability. BDA platform of HBase distributed over Hadoop successfully; however, some
inconsistencies of MapReduce limited operational efficiencies. Importance of
Hadoop/MapReduce on representation of platform performance discussed.

Keywords:
Big Data
Big Data Analytics
Data Mining
Data Visualizations
Healthcare
Hospital Systems
Interactive Big Data
Patient Data
Simulation
Usability

1. Introduction

Gantz and Reinsel [1] predicted in their ‘The Digital Universe’
study that the digital data created and consumed per year would
reach 40,000 Exabyte by 2020, from which a third will promise
value to organizations if processed using big data technologies. In
fact, global digital patient data expected to reach 25 Exabytes
(1018 bytes) in 2020 [2]. Furthermore, A McKinsey Global
Institute stated US healthcare that uses Big Data effectively could
create more than $300 billion in value from cost savings annually
[3]. At the same time in 2013, Canada Health Infoway [4]
produced a white paper to solidify the meaningful use of patient

data to cut healthcare costs for each of the Provinces. However, the
increase in digital data and fluid nature of information- processing
methods and innovative big data technologies has not caused an
increase of implementations in healthcare in Canada and abroad.
Furthermore, there are very few if any of the 125 countries
surveyed by the World Health Organization with any Big Data
strategy for universal healthcare coverage of their eHealth profiles
[5]. Conventional systems in healthcare are very expensive to
implement and establish that further reduces the uptake of open
source software like Hadoop/MapReduce frameworks.

Health Big Data is a large complex-distributed highly
diversified patient data requiring high performance analytical tools
to utilize large volume of data for healthcare application [6-8]. Big
Data Analytics (BDA) is a platform with analytical technologies

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Dillon Chrimes, Quality Systems, IMIT, Vancouver
Island Health Authority, 1952 Bay Street, V8R1J8, Victoria BC Canada
Phone: 1 (250)-370-8111 ext.13975 | Email: dillon.chrimes@viha.ca

Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com

Special Issue on Computer Systems, Information Technology, Electrical and Electronics
Engineering

https://dx.doi.org/10.25046/aj020104

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj020104

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 24

frame worked to extract knowledge in real-time for evidence-
based medicine, medical services and transport of inpatients in
hospital wards, onset of in-hospital acquired infections, and
treatments linked to health outcomes including scientific and
clinical discoveries [3, 4, 9-11]. However, a BDA platform is of
little value if decision-makers do not understand the patterns it
discovers and cannot use the trends to reduce costs or improve
processes. Subsequently, BDA research is important and highly
innovative to effectively utilize data quickly for the ongoing
improvement of health outcomes in bioinformatics, genome
sequencing, and tertiary healthcare [12-16].

After extensive literature review, many Big Data technologies
with Hadoop/MapReduce are available but few applied in
healthcare (Table 1 in Appendix). BDA platform called
Constellation deployed at the Children’s Mercy Hospital in Kansas
City, US successfully matched patient data of children to their
whole-genome sequencing for treatment of potentially incurable
diseases [43]. Their big data analytics study showed that, in
emergency cases, the differential diagnosis for a genetic disease in
newborn patients was identifiable in 50 hours [42]. Further
improvement using Hadoop reduced the analysis time for the
whole genome sequencing from 50 to 26 hours [44].
Unfortunately, even with these success stories of fully functional
BDA platforms in bioinformatics, there are few studies and
published reporting of BDA platforms used by health providers in
hospital systems.

There are many alternative solutions for databases in Big Data
platforms; choice of the best solution depends on the nature of the
data and its intended use, e.g., [37]. In practice, while many
systems fall under the umbrella of NoSQL systems and are highly
scalable (e.g., [45], these storage types are quite varied). Big Data
is characterized in several ways: as unstructured [19], NoSQL [31,
36], key-value (KV) indexed, text, information-based [46], and so
on. In view of this complexity, BDA requires a more
comprehensive approach than traditional data mining; it calls for a
unified methodology that can accommodate the velocity, veracity,
and volume capacities needed to facilitate the discovery of
information across all data types [4]. Furthermore the KV data
stores represent the simplest model of NoSQL systems: they pair
keys to values in a very similar fashion to show a map (or
hashtable) works in any standard programming language. Various
open-source projects provide key-valued NoSQL database
systems; such projects include Memcached, Voldemort, Redis, and
Basho Riak, e.g., [22]. HBase was chosen because it simplified the
emulation of the columns using the metadata in each column rather
than the data types and the actual relationships among the data.
HBase also has a dynamic schema that can be uploaded via other
Apache applications; therefore, the schema can be changed and
tested on the fly. Another benefit of using HBase is that further
configurations can be accomplished for multi-row transactions
using a comma-separated value (.CSV) flat file [47].

The KV class of store files in databases is the heart of data
storage in HBase that provides inherent encryption. Privacy
mandates are a major barrier for any BDA implementation and
utilization. The Health Insurance Portability and Accountability
Act (HIPAA), as well as Freedom of Information and Protection
of Privacy (FIPPA) Act requires the removal of 18 types of
identifiers, including any residual information that could identify
individual patients, e.g., [48]. Therefore, privacy concerns can be
addressed using new database technologies, such as key-value
(KV) storage services. For example, Pattuk, Kantarcioglu,

Khadilkar, Ulusoy, and Mehrotra [49] proposed a framework for
securing Big Data management involving an HBase database –
called Big Secret – securely outsources and processes encrypted
data over public KV stores.

In a hospital system, such as for the Vancouver Island Health
Authority (VIHA), the capacity to record patient data efficiently
during the processes of admission, discharge, and transfer (ADT)
is crucial to timely patient care and the quality of patient-care
deliverables. The ADT system is the source of truth for reporting
of the operations of the hospital from inpatient to outpatient and
discharged patients. Proprietary hospital systems for ADT also
have certain data standards that are partly determined by the
physical movement of patients through the hospital rather than the
recording of diagnoses and interventions. Among the deliverables
are reports of clinical events, diagnoses, and patient encounters
linked to diagnoses and treatments. Additionally, in most Canadian
hospitals, discharge records are subject to data standards set by
Canadian Institute of Health Information (CIHI) and entered into
Canada’s national Discharge Abstract Database (DAD).
Moreover, ADT reporting is generally conducted through manual
data entry to a patient’s chart and then it is combined with
Electronic Health Record (EHR), which could also comprise auto-
populate data, to conglomerate with other hospital data from
provincial and federal health departments [50]. These two
reporting systems, i.e., ADT and DAD, account for the majority of
patient data in hospitals, but they are seldom aggregated and
integrated as a whole because of their complexity and large
volume. A suitable BDA platform for a hospital should allow for
the integration of ADT and DAD records to query the data to find
unknown trends at extreme volumes of the entire system.
However, there are restrictions that limit the data that gets
recorded, especially on discharging a patient a physician is legally
required only to record health outcomes rather than the details of
interventions. For these and other reasons, health informatics has
tended to focus on the structure of databases rather than the
performance of analytics at extreme volumes.

Currently, the data warehouse at VIHA has over 1000
(relational) tables that include alias pools for data integrity of
patient encounters in ADT of the hospital system. Its total size
estimated at one billion records or 14 Terabytes (TB), and it is one
of the largest continuous patient records in Canada [51]. Huge
volumes of highly diversified patient data are continuously added
into this collection; this equates to annually 500 million records or
five TB. Currently, at VIHA, numerous data manipulations and
abstracting processes put into place via non-enterprise platforms to
combine patient data from the relational databases of the hospital
system customized to apply clinical and operational queries.
Neither business intelligence (BI) tools nor data warehouse
techniques are currently applied to both data sets of ADT and DAD
at the same time and over its entire volume of data warehouse.
Therefore, we propose an enterprise BDA platform with
applications to query patient data of a database representing a
hospital system comprised of ADT and DAD databases.

2. Interactive Healthcare Big Data Analytics (HBDA)
Framework

2.1. Conceptual Framework

The conceptual framework for a BDA project in healthcare is
similar to that of a traditional health informatics analytics. That is,
its essence and functionality is not very different from that of

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 25

conventional systems. The key difference lies in data-processing
methodology. In terms of the mining metaphor, data represent the
gold over the rainbow while analytics systems represent the
leprechaun that found the treasure or the actually mechanical
minting of the metals to access it. Moreover, healthcare analytics
is defined as a set of computer-based methods, processes, and
workflows for transforming raw health data into meaningful
insights, new discoveries, and knowledge that can inform more
effective decision-making [23]. Data mining in healthcare has
traditionally been linked to knowledge management, reflecting a
managerial approach to the discovery, collection, analysis, sharing,
and use of knowledge [52-53]. Thus, the DAD and ADT are
designed to enable hospitals and health authorities to apply
knowledge derived from data recording patient numbers, health
outcomes, length of stay (LOS), and so forth, to the evaluation and
improvement of hospital and healthcare system performance.
Furthermore, because the relational databases of hospitals are
becoming more robust, it is possible to add columns and replicate
data in a distributed filing system with many (potentially cloud-
based) nodes and with parallel computing capabilities. The utility
of this approach is that columns are combined (i.e., columns from
the DAD and ADT database). In addition, such a combination can
mimic data in the hospital system in conjunction with other clinical
applications. Through replication, generation and ingestion, the
columns can form one enormous file then queried (while columns
added and removed or updated).

BDA platform(s) should offer the necessary tools currently
performed by hospitals and its managed relational databases to
query the patient data for healthcare. Furthermore, the end user
experience should include analytical tools with visualizations
using web-based applications. To achieve this, a dynamic
interactive BDA platform, and following our preliminary results
from Chrimes, Moa, Zamani, and Kuo [54], established for
healthcare application at the University of Victoria (UVic), in
association with WestGrid, and Vancouver Island Health
Authority (VIHA), Victoria, BC, Canada. Thus, our Healthcare
BDA (HBDA) platform provided a proof-of-concept
implementation and simulation of high performance using
emulated patient data generated on WestGrid’s Linux database
clusters located at UVic. Emulation consisted of reaching nine
billion health records that represented the main hospital system of
VIHA and its clinical reporting via its data warehouse (Figure 1).
The emulated data utilized in simulation could capture the
appropriate configurations and end-user workflows of the
applications, while ultimately displaying health trends at the
hospital and patient levels.

Our team of collaborators existed between UVic, Compute
Canada\WestGrid and VIHA that thru requirements gathering,
usability testing and software installations established the
framework of our HBDA platform. It comprised innovative
technologies of Hadoop Distributed File System (HDFS) with
MapReduce’s Job/Task Scheduler, and noSQL database called
HBase. The database construct was complex and had many
iterations of development over the past three-four years. There
were many configurations of components included such as Apache
Phoenix, Apache Spark and Apache Drill, as well as Zeppelin and
Jupyter Notebook web-client interfaces. Furthermore, we required
a proof-of-concept to implement in simulation before applying it
to real patient data after rigorously approved by research ethics
with guaranteed highly secured patient data. Our aim was
effectively to query billions records of patient data stored in the
VIHA with health professionals and providers to reveal its fast and

reliable queries, as well as unveil unknown health trends, patterns,
and relevant associations of medical services with health
outcomes.

Figure 1. The proposed framework of Health Big Data Analytics (HBDA) platform
with Vancouver Island health authority (VIHA) under replicated Hadoop
Distributed File System (HDFS) to form noSQL database via MapReduce loads
with big data analytic tools interacting under parallelized deployment manager
(DB) at Westgrid, UVic, Victoria.

We constructed 50 million to nine billion patient records to
form different levels of testing of our HBDA platform based on
known data profiles and metadata of the patient data in the hospital
system. Henceforward, our simulation should show significant
improvements of query times; usefulness of the interfaced
applications; and the applicability and usability of the platform to
healthcare. To deal with the implementation challenges, we
viewed HBDA as a pipelined data processing framework, e.g.,
[11], and worked in conjunction (interviewed) with VIHA experts
(and potential stakeholders) to identify the metadata of important
inpatient profiles (Figure 2). Additionally, the stakeholder
provided the required patient data and workflow processes for both
generating the reports and the application used for querying results
to achieve visualizations.

Figure 2. Main stakeholder groups of Physicians, Nurses, Health Professionals (i.e.
epidemiologists and clinical reporting specialists), and Data Warehouse and
Business Intelligence (BI) team (includes application platform and database
integration) involved in clinical reporting at VIHA.

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 26

2.2 Overview

 The objective of this platform implementation and simulated
performance was to establish an interactive framework with large
representative patient data aligned with front-end and interfaced
applications linked to HDFS stack and noSQL database with
visualization capabilities that allows users to query the data. For
the implementation, advanced technologies created a dynamic
BDA platform while generating emulated patient data over a
distributed computing system, which is currently not in use at
VIHA and many other health institutions in Canada. The
implemented HBDA was big data centric and designed to make
big data capabilities, including analytics using mainly SQL-like
compatibilities with data warehouse team and front-end
architecture for correct visualization, accessible to different
stakeholders, especially physicians and healthcare practitioners
(Figure 3).

Figure 3. The main components of our Healthcare Big Data Analytics (HBDA)
platform envisioned by stakeholders and derived from our team. It is important to
note that the center of this diagram is truly the SQL-like code used to query the data
because without it the other interconnected components would not provide any
linkage to user and no meaningful use.

The established BDA platform allowed for testing the queries’
performance that included actions and filters that corresponded to
current reporting of VIHA’s clinical data warehouse. To test
performance, the first step was to emulate the metadata and data
profiles of VIHA’s ADT model, which is Cerner’s (proprietary)
hospital system. The metadata derived for the patient encounter(s)
combined with VIHA’s hospital reporting to CIHI of its DAD
formed our test database. The data aggregation represented both
the source system of patient encounters and its construct, which
represented patient data collected during the encounter (for
different encounter types) before patient discharge. At VIHA, and
its Cerner system, there are hundreds of tables that comprise the
ADT and all are part of a relational database with primary and
foreign keys. These keys are important for data integrity that link
clinical events for that patient only. Therefore, it was necessary to
use constraints in emulating data for the noSQL database.

Hadoop/MapReduce framework proposed to implement the
BDA platform and analyze emulated patient data over a distributed
computing system is net new to acute patient care settings at VIHA
and other health authorities in Canada. Innovative technologies
from Hadoop’s ecosystem with MapReduce programming, and a
NoSQL database, called HBase were utilized to form a complex

database construct. HBase is an open-source, distributed key-value
(KV) store based on Google’s BigTable [55] ─ persistent and
strictly consistent NoSQL system using HDFS for data storage.
Furthermore, with all these technical components to construct the
platform, the build also took into account the workflow by clinical
reporting workgroups with the same metadata from hospital
datasets.

2.3 Data Generation

To generate accurate representations of patient records, we
originally constructed the emulated database in Oracle Express
11g using SQL to establish the column names and metadata using
constrained data profiles for each randomized row of dummy
patient data. For example, data for the diagnostic column was ICD-
10-CA codes and set that data to those standardized characters. The
data was populated for each column based on a list of metadata set
in the script to generate for each of the columns. Furthermore,
important data profiles and dependencies established through
primary keys over selected columns. Ninety columns from DAD
and ADT were eventually established, generated, and ingested into
the HBDA platform. Since data warehouse team working with
health professionals for clinical reporting relies on comma-
separated value (CSV) formats when importing and exporting their
data, we opted to use the ingested CSV files directly for analytics
instead of HBase. This was carried out previously on our platform
using Apache Phoenix and its SQL-like code on HBase [51, 56].
Two data sizes of 50 million and one billion records established a
benchmark check on how different packages (Apache Spark and
Drill) scaled with data size with an additional three billion tested.

2.4 Infrastructure

Using existing computational resources and architecture was
an essential requirement. We relied on the existing WestGrid
clusters at UVic to run the platform. Among ~500 nodes available
on the WestGrid clusters hosted at UVic, we planned to use as
many nodes as possible while benchmarking and testing
scalability. Currently, we only used six dedicated nodes due to
configuration issues and ongoing maintenance. Local disks had
6TB per node that then could reach ten billion records at this 36TB
storage to illustrate operational platform. The PBS/Torque
resource manager managed the clusters that allowed access to
launch our interactive Hadoop/HBase jobs and modules for
Apache Spark/Drill while loading Jupyter Notebook or Zeppelin
on those nodes. The nodes had 12 cores, 24GB and three 2TB-
disks each, and were similar in technical specification to the
existing servers at VIHA. Thus, comparisons could be made with
VIHA based on Westgrid’s high performance supercomputing
(HPC), referred to architectural and technical specifications for
more details [51].

Given that the WestGrid clusters are traditional HPC clusters,
we had to customize our setup scripts to launch a dynamic HBDA
platform that runs when the job starts and terminates when the job
finishes. This allows our HBDA platform to exist within an HPC
cluster and thus eliminate special treatment to the environment
with extending the job wall-time when necessary.

2.5 Big Data Analytics (BDA) and Visualization

After interviews with different VIHA stakeholders, identified
requirements applied to our proof-of-concept and visualization
simulation: interactive, simple, SQL-like, and visualization-
enabled interface. Moreover, the platform should be able to offer
the necessary tools to implement new analyses and act as an expert

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 27

system when needed; this was required because clinicians were
interested in answering specific scenarios. An example of a
scenario was:

“Clinicians suspect that frequent movement of patients within the
hospital can worsen outcomes. This is especially true of those who are
prone to confusion (or mental relapse) due to physical and environmental
changes in their current state that can exacerbate the confusion. If this
occurs, a physician may attribute their confusion to the possible onset of
an infection, a disease or a mental illness, resulting in unnecessary
laboratory tests and medications. Moreover, by moving to a new location,
new healthcare workers may detect subtle changes in a patient’s mental
baseline and frequent patient movements can cause sepsis onset.”

For the HBDA platform to be successful it should process 1) a
large number of patient records (data space) over a wide range of
computationally intensive algorithms (algorithmic space); as well
as 2) to easily generate visualizations (visualization space); 3) offer
libraries; and, 4) application tools (tool space) to support these four
spaces. Deploying our platform covered all the four of these spaces
while being interactive was challenging. In previous study [51,
54], we reported that Hadoop, HBase, and Apache Phoenix
provided an excellent platform to perform SQL-like queries with
high performance and accurate patient results. However, the
ingestion of one billion records from Hadoop HFiles bulkloaded to
HBase (indexed files) took weeks, while three billion took over
two months on the infrastructure before finalizing the
configurations. Moreover, SQL-like queries and tools were only a
small fraction of the interest and importance mentioned by
stakeholders, who included other factors of their workflow and
professional consideration like algorithmic, tool, visualization
spaces (e.g., epidemiology versus hospitalization reporting). In our
simulation, therefore, we expanded on those spaces that our first
article of Hadoop and HBase did not investigate with three-nine
billion records while using Zeppelin and Jupyter with Spark and
Drill’s separate interface at various testing. Moreover, we
investigated SQL-like capabilities of Spark and SQL-ANSI of
Drill on CSV files indexed by HBase compared to Phoenix on
HBase.

The data construction framework used by this study extracted
the appropriate data profiles from the data dictionaries and data
standard definitions for the ADT system and DAD abstract manual
[57]. The data used to test performance was circumvented with the
interviews with different VIHA stakeholders, several requirements
and scenarios, and 17 clinical cases were outlined that were
identified for a realistic proof-of-concept BDA and data
visualization: the interface should be interactive, simple, ANSI-
SQL or SQL-like, and visualization enabled/embedded in the
browser. Moreover, the platform should be able to offer the
necessary tools to implement newly advanced analytics to act as a
recommendation of an expert system; this is required, as clinicians
are interested in answering specific scenarios of inpatient
encounters with accurate data.

2.6 Testing & Evaluation

The functional platform tested performance of data migrations
or ingestions of HFiles via Hadoop (HDFS), bulkloads of HBase,
and ingestions of HFiles to Apache Spark and Apache Drill. Test
speed of performance to complete ingestion or queries were proof-
of-concept testing using simulated data with the same replicated
metadata and very large volume, but this did not consist of
comparing performance of SQL (relational database) with NoSQL
or different data models with real patient data. The SQL can be
very similar with real data but cannot be compared at this time.

Furthermore, the bulk of the methodology is generating the
emulated data and queries with Hadoop configurations and other
software, i.e., HBase, Spark and Drill. Most of the configurations
established after installing the components, which were defaulted
for the distributed filing and MapReduce in Java, Python and Scala
to perform as expected; therefore, the platform established by
Hadoop-MapReduce configurations to run and integrate with all
other big data tools.

For SQL-like analytics, to test and evaluate Zeppelin versus
Jupyter with Spark and SQL-ANSI with Drill, we selected 22 SQL
query tests based on the interviews conducted and same as
published in Chrimes et al., [51]. Eventhough the queries had
different level of complexity; our performance results showed that
all had similar times to generate the patient results or reports. An
example of SQL statements used to test system was:

SELECT Count(Episode_Duration) as EDCount,
Count(Anesthetistic_Technique) as ATCount,
Count(Interven_Location) as ILCount,
Count(Medical_Services) as MSCount,
Count(Unit_Transfer_Occurrence) as UTOCount FROM
DADS1 where EncounterID<1000 Group By age;

For other kinds of analytics, especially the machine learning
algorithms, we performed simple tasks such as computing the
correlations between different pairs of columns, such ‘age’ and the
‘length of stay at the hospital’ or LOS, as well as simple clustering.
The data was synthetic or emulated; therefore, using machine
learning to answer intelligent scenarios or find interesting patterns
were only applied narrowly to find randomized patterns of the
health outcome parameters that was already known. Nevertheless,
its configurations and performance was ultimately the information
attained towards using real patient data over our HBDA.

For visualization, we utilized the common set of graphs that
healthcare providers would use to generate such reporting as table,
pie chart, scatter plot, and histogram visualizations. In producing
each graph and SQL-like query, we recorded and documented all
processes and connectivity times.

3. Implementation of HBDA Platform

3.1. Overview of High Performance System(s)

The beauty of a BDA platform with open-source software in
Hadoop’s ecosystem is that there are a wide range of tools and
technologies for bulkloading and accessing large datasets from
different sources. Sqoop, for example, is useful to ease the transfer
between existing relational databases and a BDA platform [36].
For collecting and gathering unstructured data, such as logs, one
can use Flume. Since the performance tests of queries on the
platform relied on data emulation, it was used, as a proof-of-
concept, the usual high-speed file transfer technologies (such as
SCP and GridFTP) to transfer data to the HPC parallel file system
(GPFS). It was then used the Hadoop and HBase as NoSQL
database bulkload utilities to ingest the data.

The established BDA platform will be used to benchmark the
performance of end users’ querying of current and future reporting
of VIHA’s clinical data warehouse (i.e., in production at VIHA,
spans more than 50 years of circa 14 TB). To accomplish this,
Hadoop environment (including the Hadoop HDFS) from a source
installed and configured on the WestGrid cluster, and a dynamic
Hadoop job was launched. Hadoop (version 2.6.0) and its HDFS
was configured by hdfs-site.xml and a MapReduce frame [26],

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 28

configured via mapred-site.xml, that was run under the Hadoop
resource manager Yarn (with configuration file yarn-site.xml). The
number of replicas was set to three. To interact with HDFS,
command scripts were run to automate the ingestion step (generate
data replication in the exact format specified by SQL script to the
nodes).

The BDA platform was built on top of the available open-
source database software (HBase). HBase (NoSQL version
0.98.11) is a NoSQL database composed of the main deployment
master (DM) and fail-over master, the RegionServers holding
HBASE data, and ZooKeeper, which contained services to allocate
data locality [28], of three nodes, that orchestrated that ensemble.
The xml configuration files were HBase-site.xml and the HBase-
env.sh adjusted to improve the performance of HBase. HBase was
chosen due to its NoSQL services and many other features,
especially linear and modular scalability. In addition, it allows for
SQL-like layers via Apache Phoenix configured on top of HBase
big-tables.

The construction and build of the framework with HBase
(NoSQL) and Hadoop (HDFS) coincided with and enforced by the
existing architecture of the WestGrid clusters at UVic (secure login
via LDAP directory service accounts to deployment database
nodes and restricted accounts to dedicated nodes). The data were
distributed in parallel on the nodes via a balanced allocation to
each local disk with running part of the batch jobs in a serial
computing process. Deployment of the Hadoop environment on
the nodes was carried out via a sequence of setup scripts that the
user calls after loading the necessary modules. These setup scripts
create an initial configuration depending on the number of nodes
chosen when launching the job. The user can adjust those
configurations to match the needs of the job and its performance.

Making the DBA platform InfiniBand-enabled was
challenging, as most of the Hadoop environment services rely on
the hostname to get the IP address of the machine. Since the
hostnames on a cluster are usually assigned to their management
network, the setup scripts and the configuration files required
adjustment. The InfiniBand was used because it offers low latency
(in us) and high bandwidth (~40Gb/s) connectivity between the
nodes. Yarn, Hadoop’s resource and job manager [33],
unfortunately still partly used the Gig-Ethernet interface when
orchestrating between the nodes, but the data transfer was carried
out on the InfiniBand.

The bulk of the framework was comprised of open-source
packages of Hadoop’s ecosystem. Even though several
configurations were done to the Hadoop ecosystem to optimize
running on the WestGrid dedicated cluster, no hardware
modification was needed; possible future changes could be made
to meet minimum recommended RAM, disk space, etc.
requirements per node, e.g., refer to guidelines via Cloudera [58].
Hadoop provides the robust, fault-tolerant HDFS inspired by
Google’s file system [55], as well as a Java-based API that allows
parallel processing across the nodes of the cluster using the
MapReduce paradigm. The platform was used in Python with Java
to run jobs and ingestions. Hadoop comes with Job and Task
Trackers that keep track of the programs’ execution across the
nodes of the cluster. These Job and Task Trackers are important
for Hadoop to work on a platform in unison with MapReduce and
other ingestion steps involved with HBase, ZooKeeper, Spark, and
Drill. There have been many contributors, both academic and
commercial (Yahoo being the largest), to using Hadoop over a

BDA platform, and a broad and rapidly growing user community
[59].

The software stack used in the platform has at its bottom is
HDFS (Figure 4). HDFS is the distributed file system of Hadoop
and known to scale and perform well in the data space. Yarn was
the resource manager of Hadoop and services of scheduling
incongruent to running the Hadoop jobs. In addition to MapReduce
component, Yarn, and HDFS constitute the main components [59].
In our platform, we built, configured and tested different versions
of Hadoop, and managed the version via its respective module
environment packages. The following module command lists all
the available Hadoop versions:
$module avail Hadoop

Hadoop/1.2.1(default)Hadoop/2.2.0Hadoop/2.6.0
Hadoop/2.6.2

For our study, we used Hadoop2.6.2 with replication set to
three in all our runs. Instead of using the MapReduce as our main
service for the algorithmic space, we chose Apache Spark, as it
covers larger algorithmic and tool spaces and outperforms
Hadoop’s MapReduce to HBase as bulkload.

eeper is a resource
allocator; Yarn is resource manager; HDFS is Hadoop Distributed File System;
HBase is noSQL database; Phoenix is Apache Phoenix (query tool on HBase);
Spark is Apache Spark (query tool with specialized Yarn); Drill is Apache Drill
(query tool with specialized configuration to Hadoop via ZooKeeper); and Zeppelin
and Jupyter are interfaces on local web hosts (clients) using Hadoop ingestion and
Spark module.

The queries via Apache Phoenix (version 4.3.0) resided as a
thin SQL-like layer on HBase. This allowed ingested data to form
structured schema-based data in the NoSQL database. Phoenix can
run SQL-like queries against the HBase data. Similar to the HBase
shell, Phoenix is equipped with a python interface to run SQL
statements and it utilizes a CSV file bulkloader tool to ingest a
large flat file using MapReduce. The load balancing between the
RegionServers (e.g., “salt bucket”) was set to the number of slaves
or worker nodes that allowed ingested data to be balanced and
distributed evenly. The pathway to running ingestions and queries
from the build of the BDA platform on the existing HPC was as
follows: CSV flat files generated  Module Load  HDFS
ingestion(s)  Bulkloads/HBase  Apache Phoenix Queries.
Under this sequence, the Apache Phoenix module loaded after
Hadoop and HBase SQL code was directed and then iteratively run
to ingest 50 million rows to the existing NoSQL HBase database

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 29

(see Results for details). This pathway was tested in iteration up to
three billion records (once generated) for comparison of the
combination of HBase-Phoenix versus Phoenix-Spark or an
Apache Spark Plugin [60].

After the metadata, used in the emulated database, was verified
from the existing relational database, it was established as a
patient-centric SQL-like queries using Phoenix on top of the non-
relational NoSQL HBase store. To establish data structure, the
EncounterID was set as a big data integer (so that it can reach
billions of integers without limitation) and indexed based on that
integer via HBase for each unique at every iteration that followed.
This indexed-value column, unique for every row, causes
MapReduce to sort the KV stores for every one of the iterations
that can increase the integrity of the data and increase its secured
access once distributed. Once distributed, this allowed for SQL-
like scenarios to be used in the evaluation of the performance of
the BDA platform and accuracy of the emulated patient database.

3.2. Implementation of Apache Spark Technology System

Apache Spark (version 1.3.0) was also built from source and
installed to use on HBase and the Hadoop cluster. The intent was
to compare different query tools like Apache Spark over the BDA
platform with Zeppelin and Jupyter then cross-compared with
Drill’s ANSI-SQL and Apache Phoenix using similar SQL-like
queries. Currently, Apache Spark, its action filters and
transformations and resilient distributed dataset (RDD) format, is
at the heart of the processing queries over the platform aligned with
Hadoop [33]. It covered a substantial data space because it could
read data from HDFS and HBase. Its speed can be fast because of
its judicious use of memory to cache the data, because Spark’s
main operators of transformations to form actions/filters were
applied to an immutable RDD [32-33]. Each transformation
produces an RDD that needs to be cached in memory and/or
persisted to disk, depending on the user’s choice [32, 61]. In Spark,
transformation was a lazy operator; instead, direct acyclic graphs
(DAG) of the RDD transformations build, optimize, and only
executed when action applied [32]. Spark relied on a master to
drive the execution of DAG on a set of executors (running on the
Hadoop DataNodes). On top of the Spark transformation engine
there was a suite of tool space: Spark SQL and data frames,
Machine Learning Library (MLLib), Graph library (GraphX), and
many third-party packages. These tools run interactively or via a
batch job. Similar to Hadoop, all of this software is available
through the module environments package [54, 61]. Since the
investigation was for user interactivity and usability the following
was elaborated on:

i) Spark terminal is available for users to interact with Spark
via its terminal. Similar to the usual command line terminals,
everything displayed as text. For Scala language (Java and
Python), the user can call spark-shell to get access to the Scala
(i.e., Python with Java libraries) terminal. For Python, the user
should run Pyspark (module). For this study’s platform, the scale
mode of use was only recommended for advanced users. For all
stakeholders, selecting a terminal is not user-friendly and the
platform will be viewed as too cumbersome to use; therefore, it ran
the module in simulation as an administrator with the end user.

ii) Jupyter notebook is a successful interactive and
development tool for data science and scientific computing. It
accommodates over 50 programming languages via its notebook
web application, and comprises all necessary infrastructures to
create and share documents, as well as collaborate, report, and

publish. The notebook was user-friendly and a rich document able
to contain/embed code, equations, text (especially markup text),
and visualizations. For utilization, the simultaneous running of all
queries over the fast ingestion of the entire database was a
significant achievement. Furthermore, corroboration of the results,
after selecting a port and local host to run over a browser, started
from 50 million and extending to three billion records, and
validated the queries over the time of application to display. The
existing software installations of Jupyter 4.0.6 on python 2.7.9
were implemented without customization.

iii) Zeppelin was another interface used to interact with
Spark. Zeppelin is a web- based notebook; it is not limited to
Spark. It supports a large number of back-end processes through
its interpreter mechanism [32]. In Zeppelin, any other back-end
process can be supported once the proper interpreter is
implemented for it. SQL queries were supported via the SparkSQL
interpreter and executed by preceding the query with a %sql tag.
What makes Zeppelin interesting, from the HBDA platform
perspective, was the fact that it has built- in visualizations and the
user can, after running an SQL query, click on the icons to generate
the graph or chart. This kind of at-the-fingertip visualization was
essential for the zero-day or rapid analytics. Spark 1.5.2 and
Zeppelin 0.6.0 were built from source, configured with a port and
local host had to run over a browser, and used for the testing and
benchmarking of the platform.

3.3. Implementation of Apache Drill Technology System

Inspired by Google’s big query engine Dremel, Drill offers a
distributed execution environment for large-scale ANSI-
SQL:2003 queries. It supports a wide range of data sources,
including .csv, JSON, HBase, etc... [62]. By (re)compiling and
optimizing each of the queries while it interacting with the
distributed data sets via the so-called Drillbit service, Drill showed
capacity of the query with performance at a low latency SQL
query. Unlike the master/slave architecture of Spark, in which a
driver handles the execution of the DAG on a given set of
executors, the Drillbits were loosely coupled and each could accept
a query from the client [63]. The receiving Drillbit becomes the
driver for the query, parsing, and optimization over a generated
efficient, distributed, and multiphase execution plan; it also gathers
the results back when the scheduled execution is done [19, 63]. To
run Drill over a distributed mode, the user will need a ZooKeeper
cluster continuously running. Drill 1.3.0 and ZooKeeper 3.4.6
were installed and configured on the framework of the platform
over a port with a local host.

4. Findings and Significant Benchmarking Results

4.1. Technical Challenges

From a technical perspective, very few issues were faced
during software installation of Spark and Drill. Besides the lack of
documentation, a major issue with Hadoop’s ecosystem of
packages was that many of them failed to include the dependencies
that are local to the system, like with ZooKeeper for Spark and the
version of Hadoop required with version of Python (Table 2 in
Appendix).

To establish the BDA framework with different big data
technologies, therefore, additional configurations had to be made
in order to customize the platform without failed services and
ongoing running of Hadoop at high performance (Figure 5), which
was required to run ingestions and query. Additionally, for

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 30

improved efficiency, the platform used native libraries because
Hadoop needs to be recompiled from source [19, 22, 23, 30, 61,
63-64]. Compression of HBase store files reduced the performance
by ~100 minutes from 399 to 299 minutes on average. And it was
found that many packages do not offer a profile that allowed them
to be used, as local Hadoop even avoids downloading components.
Moreover, given that the end users were allowed to run their
Hadoop module on WestGrid’s clusters. Therefore, it was
important that the configuration directories had most of the
Hadoop’s ecosystem of packages built in to minimize reliance on
them. Unfortunately, the configuration of Hadoop was not
propagated properly to all the remote services running on the
nodes, which caused the default configuration on those nodes to be
used.

Figure 5. A month-to-month varied iteration lengths with 24GB ram consumption
on Hermes89 node reported from WestGrid showing variation in the duration of the
ingestion of 50 Million records over each of the iterations over an entire year
(November 2015 to October 2016), with more activity mid-May to October. The
graph shows the following cached memory (in blue), active passes (in green),
buffers (in yellow), as well as active (in pink), minimum required (in red) and
available memory (black line).

Four CSV files were ingested to HDFS: 1) one with 10 records
was used for quick testing; 2) one with 50 million records was used
for the actual benchmarking; and, 3) another two with one and
three billion records. The results for 3 billion are shown in Table 3
(in Appendix) while the other results for 50 million and 1 billion
were previously published [51]. Furthermore, the results also
revealed that unbalanced nodes had slower performance compared
to more balanced nodes (after manually running compression was
run for 24 hours on HBase store files).

There is a tool called Hannibal available to check Regions over
Hadoop/HBase and showed that the five Regions averaged ~1TB
and this coincided with 176-183 Store files for each (comprised of
Hadoop’s HFiles) for the entire distributed table (ingested into
HBase) for three billion records. Total equals 900 Regions and 900
Store files. The slight imbalance and an initial peak in the sizes
because compaction was disabled to run automatically (due to
performance issues) and manually running bot minor (combines
configurable number of smaller HFiles into one larger HFile) and
major reads the Store files for a region and writes to a single Store
file) compaction types. Furthermore, the durations of the iterations
continued to fluctuate with no distinctive trend for one billion. For
three billion, at more operational level at high core CPU over May-
October 2016, had similar fluctuations of 299-1600 minutes with
average of ~300-375 minutes for ingestions and roughly the same

amount of time for compaction (major and minor) manually run
before the next ingestion iteration, which accounted for 2 months
to ingest files to reach three billion.

Another major challenge faced was that Apache Drill did not
have any option to force it to bind to a specific network interface.
As a result, its Drillbits started used the network management
instead of the InfiniBand network. Zeppelin used databricks from
Spark to ingest the file that was run over the interface. Similarly, it
also intermittently occurred when initializing Zeppelin and this
added an additional 30 minutes to the ingestion and query of 1-3
billion rows. In addition to having to move from the 0.5.0 version
(as it did not support Spark 1.5.2) to the latest snapshot (0.6.0), the
Zeppelin’s Pyspark timed out the first time %pyspark was run. In
fact, it was found that the user has to wait for a couple of seconds
and execute the cell one more time to get Pyspark working.
Another challenge with Zeppelin, even though it offers a pull-
down list of notebooks, was that the notebook could only be
exported as a JSON file. Saving the notebook as an html page
produced empty webpages and that exhibited very poor usability.
Therefore, the Zeppelin notebooks can only be open under
Zeppelin. There were, however, some off-the-shelf buttons to plot
data as a data visualization tool for Zeppelin.

4.2. Data Size and Ingestion Time

Three CSV files ingested to HDFS: 1) 10 records and was used
for quick testing, and 2) others used for the actual benchmarking:
50 million records and the other with one and three billion records.
Table 4 shows results of ingestion times.
Table 4. Hadoop ingestion time (minutes) for 50 million to 3 billion records.

Data Size
50 Million
Records
(23 GB)

1 Billion
Records
(451 GB)

3 Billion
Records
(10 TB)

 Ingestion
Time ~6 min ~2 h 5 min ~5 h 2 min

If we set equation (1) Ti (N) to be the time to ingest N records,

then the data ingestion efficiency (IE) for 50 million (50M), one
billion (1B) and three billion (3B) was therefore:

(1)

4.3. SQL Query Results

The queries were run on Zeppelin, spark-shell, and Pyspark; all
took approximately the same amount of time. This was not
surprising, as they all rely on Spark SQL. Therefore, it was only
reported as a single time for all three. Spark was configured to run
on a Yarn-client with 10 executors, four cores with 8 GB of RAM
each; therefore, each node had two executors with a total of eight
cores and 16 GB memory (tests using one executor with 16 GB
and eight cores on each node was slightly less efficient).

The Zeppelin code snippet used was:
%pyspark

from time import time t0 = time()
df=sqlContext.read.format('com.databricks.spark.
csv').option('header','true').option('inferS
chema','true').load('hdfs://h
ermes0090:54310/dad/big_dad_all.csv')
df.registerTempTable('DADS1') df.cache()

𝐼𝐼𝐼𝐼 =
1(3)𝐵𝐵 × 𝑇𝑇𝑖𝑖(50𝑀𝑀)
50𝑀𝑀 × 𝑇𝑇𝑖𝑖(1(3)𝐵𝐵) = 0.93

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 31

%sql SELECT Count(Episode_Duration) as
EDCount, Count(Anesthetistic_Technique) as
ATCount, Count(Interven_Location) as ILCount,
Count(Medical_Services) as MSCount,
Count(Unit_Transfer_Occurrence) as UTOCount from
DADS1 where EncounterID<1000 Group By age

Drill was configured to run the Drillbits on the Hadoop
DataNodes (with a single Drillbit on each node). Each Drillbit was
configured with a VM heap of 4 GB and a maximum direct
memory of 16 GB (standard configuration). The queries were run
from both the web interface of one of the Drillbits and the sqlline
command line, using the code snippet below as example. Both
gave the same timing.

SELECT Count(Episode_Duration) as EDCount,
Count(Anesthetistic_Technique) as ATCount,
Count(Interven_Location) as ILCount,
Count(Medical_Services) as MSCount,
Count(Unit_Transfer_Occurrence) as UTOCount from
dfs.`/dad/big_dad_all.csv` where
EncounterID<1000 Group By age

The results clearly showed that Drill was five to 7.6 faster than
Spark, which indeed justified its use as a low latency query-engine
tool. The Phoenix and HBase benchmarking reported earlier [51]
showed that HBase outperformed all of them and the HBase
queries were all within a second or two. This was an astonishing
performance and HBase was used, when possible, as the
underlying data source for the HBDA platform.

It was surprising that the query efficiency (QE) of Drill was
only 76%. It was believed at the time of running both engines that
this was due to a lack of binding to the InfiniBand interface. The
Drill Developers were contacted about this and there was work
with them to debug for an eventual break fix. Drill’s query
processes, however, were still not as efficient as that of Spark with
increased database size to ingest.

We defined Tq (N) to be the query time and its efficiency (QE)
in equation (2) for 50 million (50M), one billion (1B) and three
billion (3B) was defined as:

(2)

The results of the benchmarking in Table 5 clearly shows that
Drill was 5 to 7.6 was faster than Spark and indeed justified its use
as a low latency query engine tool.

Our Phoenix and HBase benchmarking reported earlier
showed that HBase outperformed all of them and the HBase
queries were all within a second or two [51]. These results were
astonishing and high performance using HBase when possible, as
the underlying data source for our HBDA platform. Furthermore,
Spark did show improved query efficiencies from three to six
billion patient records compared to less relative improvement by
Drill (Figure 6).
Table 5. SQL query time (seconds) for 50 million to 3 billion records.

SQL Engine Spark SQL
(seconds)

Drill SQL
(seconds)

50 Million Records 194.4 25.5

1 Billion Records 3409.8 674.3
3 Billion Records 5213.3 1543.2

Query Efficiency 1.14-1.52 0.76-0.84

Figure 6. Projected ingestion and query results for 50 million to 6 Billion patient
records using Apache Spark or Apache Drill Systems.

4.4. Usability, Simple Analytics and Visualizations

The results showed that the ingestion time of one billion
records took circa two hours via Apache Spark. Apache Drill
outperformed Spark/Zeppelin and Spark/Jupyter. However, Drill
was restricted to running more simplified queries, and was very
limited in its visualizations that exhibited poor usability for
healthcare. Zeppelin, running on Spark, showed ease-of-use
interactions for health applications, but it lacked the flexibility of
its interface tools and required extra setup time and 30-minute
delay before running queries. Jupyter on Spark offered high
performance stacks not only over the BDA platform but also in
unison, running all queries simultaneously with high usability for
a variety of reporting requirements by providers and health
professionals.

Being able to perform low latency SQL queries on a data
source is not enough for healthcare providers, clinicians, and
practitioners. Interacting with and exploring the data through
different analytics algorithms and visualizations is usually required
to get the data’s full value. A variety of functionalities and tools
for expressing data was an essential quality to test over the
platform.

Drill did perform well compared to Spark, but it did not offer
any tools or libraries for taking the query results further. That is,
Drill proved to have higher performance than Spark but its
interface had less functionalities. Moreover, algorithms (as simple
as correlations between different columns) were time-demanding
if not impossible to express as SQL statements. Zeppelin, on the
other hand, offered the ability to develop the code, generate the
mark-down text, and produced excellent canned graphs to plot the
patient data.

Combined with the richness of Spark and Pyspark, Zeppelin
provided a canned visualization platform with graphing icons. The
plots under Zeppelin, however, are restricted to the results/tables
obtained from the SQL statements. Moreover, algorithms (as
simple as correlation between different columns) were time
demanding if not impossible to express as SQL statements.
Zeppelin, on the other hand, offered the ability to develop the code,
generate the mark-downed text, and produced excellent canned
graphs to plot the patient data (Figure 7).

Combining with the richness of Spark and Pyspark, Zeppelin
provided a canned visualization platform with graphing icons
(Figure 8). The plots, however, under Zeppelin were restricted to
the results/tables obtained from SQL statement. Furthermore, the
results that we directly produced from Spark SQL context did not
have any visualization options in Zeppelin. Generating results

𝑄𝑄𝑄𝑄 =
1(3)𝐵𝐵 × 𝑇𝑇𝑞𝑞 (50𝑀𝑀�
50𝑀𝑀 × 𝑇𝑇𝑞𝑞 (1(3)𝐵𝐵�

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 32

from queries via Zeppelin took much longer (over 30 minutes) to
establish the platform to run queries on the interface compared to
Jupyter.

Figure 7. A web-based interface for Zeppelin showing embedded queries and the
results.

Figure 8. An example of visualization and simple correlation analytics results within
Zeppelin using Pyspark.

Furthermore, the results that were produced directly from the
Spark SQL context did not have any visualization options in
Zeppelin. Generating results from queries via Zeppelin took much
longer (over 30 minutes). Establishing the platform to run queries
on the interface and generate results via Zeppelin took longer than
Jupyter.

With Jupyter, more configurations with the data queries were
tested. It exhibited similar code to ingest the file, same Spark
databricks initialized in the interface and its SQL to query as
Zeppelin (Figure 9).

At the expense of writing the visualization code, using the
matlplotlib Python package in addition to other powerful tools,
such as Pandas, i.e., a powerful Python data analysis toolkit. The
local host was added to Hermes node to access Jupyter via the
BDA platform to compensate for the lack of visualization options
via the Zeppelin interface. Figure 10 shows a small snippet from

the output of a Jupyter/Spark interaction that uses both matlplotlib
and Java’s Pandas.

Figure 9. Spark with Jupyter and loading file before SQL is placed.

Figure 10. A simple Jupyter/Spark interaction on its web-based interface with data
visualizations using Pandas and graphed results.

Usability of the platform did validate the proof-of-concept of
querying patient data with high performance in generating results
and visualization over the interface. Performance to generate
results had the same number of sequence steps for the end users as
HBase, Spark and Drill.

Running Apache Spark took the same amount of time for
queries on Zeppelin and Jupyter; however, the initial setup (to start
the queries) took much longer via Zeppelin than Jupyter. Drill
seemed to have simplified steps to the setup interface compared to
Spark and took significantly less time; therefore, it appeared to
have better usability. Nevertheless, Jupyter supplied more
visualization defaults and customization than Drill for its
distributed mode and its interface to run the query where severely
lacking any visualization.

Usability testing of our HBDA by health professionals is
limited in this study. Running modules in sequence from Hadoop
to Spark or Drill with web clients is too technical for most end

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 33

users and it would require additional refinements to the interface
for producing clinical reports. We placed code in both Zeppelin
and Jupyter Notebooks to run all queries at once over the database
and Hadoop running. However, the only stakeholders that would
benefit from this code change or utilization would be the data
warehouse team.

5. Discussion

A Hadoop/MapReduce framework successfully formed our
HBDA platform for health applications. Very few studies have
applied big data technologies to patient data of hospital system for
healthcare applications. Moreover, no studies have tested a
variety of big data tools in Hadoop’s ecosystem of packages. The
platform successfully implemented a BDA platform and tested it
for healthcare applications with moderate resources and able to
run realistic ANSI-SQL (Drill) SQL-like (Spark) queries on three
billion records and perform interactive analytics and data
visualizations. An integrated solution eliminates the need to move
data into and out of the storage system while parallelizing the
computation, a problem that is becoming more important due to
increasing numbers of sensors and resulting data in healthcare.
Furthermore, usability goals based end user computing of the Big
Data technologies and leveraging the existing tools from data
warehouse at a health authority is important to make a stand on to
use the best Apache tools. In this case, Apache Drill and Spark
with Zeppelin or Jupyter proved to be an important test over the
one-three billion records because they had not only different
performances but also much greater differences in their usability
during operational simulation. Therefore, our study accomplished
a working Hadoop ecosystem that is applicable to large volumes
of patient data.

The sheer volume of 3 billion indexed and ~9-10 billion
generated shows that one platform could not only be operational
and productive for one hospital but many and even at a provincial
scale in Canada or statewide in other countries. The volume
achieved at a productive and operational level in our study can
also further lead to simulations that are more rigorous. Part of the
established simulations and its representation of health
informatics metadata were formulated in the formation of NoSQL
HBase database, as well as the ANSI-SQL (Drill) SQL-like
(Spark) data queries displaying results. Few studies have
produced a platform of the NoSQL database that tested ANSI-
SQL and SQL-like data queries of patient data of a hospital
system and this study adds to big data technologies, data
simulation and healthcare applications over large volumes. Hence,
this study achieved the three V’s that define Big Data [4]: high
performance (velocity) over its generator of detailed data (variety)
that formed extremely large volumes (volume) significantly
contributed to ongoing development of Information Management
and Information Technology (IMIT) in healthcare.

While ingestions in this study were extremely fast, the
bulkloads of 50 million rows in iteration to one and three billion
were slow and took, collectively, one week and up to two months,
respectively. Ingestions beyond three billion were even slower,
but these times are as fast as or faster than current data migrations

(of a similar size) estimated at VIHA. The ingestion times
achieved required several reconfigurations of HBase and Hadoop
to increase the time to distribute the data; these involve changes
in the site, yarn, and RegionServer XMLs. MapReduce was to
blame for the time needed to ingest 50 million rows varied widely
(from 2 to 12 hours). The corresponding Java coding, Java Virtual
Machines (JVMs), and Java services were a performance
bottleneck, which is common on most platforms [22, 39],
especially memory loss due to Reducer process of MapReduce
[65]. This demonstrated operationally that while
Hadoop/MapReduce did have high performance efficiencies its
clusters did break that required ongoing maintenance and this is
common across Hadoop clusters (cf. [66]). However, significance
of using the MapReduce programming model on top of the
Hadoop cluster proved a process of large volumes of clinical data
can be accomplished. More importantly, query times were less
than two seconds for all queries, which is significantly faster than
current estimated query times. Since there were no differences in
query durations observed, and since HBase is linearly scalable, it
is expected that query durations would decrease with an increase
in the number of nodes and be within a few milliseconds as nodes
approached 100, even at ten billion rows.

Clearly, this study showed that Drill, a software addition to
Hadoop developed recently in 2015-2016 [62-63], significantly
outperformed the other Apache tools. Drill outperformed Spark
and Phoenix in HBase processes before queries generated.
However, its interface lacked any functionality to customize and
mine the data, which is what health professionals require (because
of the complexity of the data and what its clinical reporting should
reveal). Furthermore, running modules Spark or Drill with web
clients over Hadoop cluster is far too technical for most end users
to generate clinical reports. This poor usability contradicts the
recommendations by Scott [62] in that in most cases Drill should
be used instead of Spark in this showdown of using SQL over big
data platforms. Drill had on Drill’s interface to test usability but
Spark had other interfaces (like Jupyter and Spark), which no
other studies have produced results on. Furthermore, this study
provided new insight into more customized Java coding with the
combination of Jupyter with Spark that enhanced the platform’s
dynamic interactivity. It is therefore recommended that Spark
with Jupyter be used with scripted coding to run ingestion and
queries simultaneously. The code can be placed in both Zeppelin
and Jupyter Notebooks to run all queries at once over the database.
However, the only stakeholders that would truly benefit from this
code change and its utilization would be the data warehouse team.
Besides, Scott [62] indicated that the battlefield for the best Big
Data software solutions is between Spark and Drill and that Drill
can emulate complex data much more efficiently than Spark
because Spark requires elaborate Java, Python and Scala coding
to do so. Nonetheless, both Spark and Drill were significantly
faster than HBase in ingesting files directly into Hadoop via
Drillbits (Drill) with ZooKeeper and MapReduce, and RRD
transformations with MapReduce (Spark). In fact, the ingestion
and queries for both Spark and Drill could be run in sequence
instead of having to run compaction as well. However, it is

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 34

difficult to compare since neither Spark nor Drill indexed the files.
Absence of indexing increases the risk of inaccuracies (even
though the framework was more fault-tolerant when running
Spark and Drill). Therefore, the big data tools and inherent
technologies highly influence the health informatics of the data
established and resulting data from queries.

The most impactful technology of the Big Data technical
components in this study was MapReduce (and Java code therein).
MapReduce methodology is inherently complex as it has separate
Map and Reduce task and steps in its default-programming
framework as this study discovered. This study’s platform was
highly dependent on the efficiency of MapReduce in ingesting
files over the six nodes, using this workflow: Input  Map 
Copy/Sort  Reduce  Output similar to a study by Chen,
Alspaugh, and Katz [67]. The Map part of the platform showed
high performance but the Reduce took more than tenfold longer
to complete its schedule; however, once configurations in Yarn,
ZooKeeper, and others the Reducer optimized at iterations of 50
million rows. According to blogs and technical resolutions
involved enabling or disabling services or xml settings over the
platform as expected to be carried because the system relied
heavily on InfiniBand (IB) bandwidth at low latency over
WestGrid nodes. Furthermore, there are known issue with the
combination of MapReduce to HBase, although studies have
shown that additional indexing and reduction processes can be
added and/or modified at the reducer with an advanced
programming method [22, 23, 39, 68-69]. However, a customized
reduction at the Reducer level of this platform proved to be
difficult to overcome and maintain at less than 3 hours for each of
the iterations at only 50 million rows at file size 258GB.

The complex nature of HBase means that it is difficult to test
the robustness of the data in emulations based on real data. This
complexity somewhat rejects our hypothesis that noSQL database
accurately simulates patient data. Nevertheless, several steps are
standardized by hospitals to prepare the DAD database for
statistical rendering to CIHI. Moreover, the actual columns used
in this study are similar ones used by VIHA. Additionally, the
DAD data also makes calculations by add columns in the data
warehouse. Adding columns to a NoSQL database is much easier
than adding columns to a SQL relational database, and von der
Weth and Datta [70] showed good performance of multi-term
keyword searches over noSQL. Therefore, it is an advantage to
have a large database with row keys and column families already
set up; Xu et al., [36] support this, as their middleware ZQL could
easily convert relational to non-relational data.

Essentially this study is proposing a row-column key-value
(KV) model to the data distributed over a customized BDA
platform for healthcare application. Wang, Goh, Wong, and
Montana [71] support this study’s claim in their statement that
NoSQL provided high performance solutions for healthcare,
being better suited for high-dimensional data storage and
querying, optimized for database scalability and performance. A
KV pair data model supports faster queries of large-scale

microarray data and is implemented using HBase (an
implementation of Google’s BigTable storage system). The new
KV data model implemented on HBase exhibited an average 5.24-
fold increase in high-dimensional biological data query
performance compared to the relational model implemented on
MySQL Cluster and an average 6.47-fold increase on query
performance on MongoDB [22]. Freire et al., [40] showed highest
performance of CouchDB (similar to MongoDB and document
store model) but required much more disk space and longer
indexing time compared to other KV stores. The performance
evaluation found that KV data model, in particular its
implementation in HBase, outperforms and, therefore, supports
this studies use of NoSQL technology for large-scale BDA
platform for a hospital system. HBase schema is very flexible, in
that new columns can be added to families at any time; it is
therefore able to adapt to changing application requirements [72-
73]. HBase clusters can also be expanded by adding
RegionServers hosted on commodity class servers, for example,
when a cluster expands from 10 to 20 RegionServers, it doubles
both in terms of storage and processing capacity. Sun [74] lists the
following notable features of HBase: strongly consistent
reads/writes; “Automatic sharding” (in that HBase tables
distributed on the cluster via regions can be automatically split
and re-distributed as data grows); automatic RegionServer
failover; block cache and “blooming” filters for high-volume
query optimization; and built-in web-applications for operational
insight along with JMX (i.e., Java memory) metrics. However,
HBase settings had to be purged and cleaned after each of the
ingestions due to unknown tracers or remnants of transactions that
then later caused failure, and compaction was run manually to
improve performance; therefore, robustness of HBase needs
further investigation.

The present study showed that performing maintenance and
operational activities over the platform were essential for high
availability. Unbalanced ingestions required removing files and
starting again. Some studies have shown that Hadoop can detect
task failure and restart programs on healthy nodes, but if the
RegionServers for HBase failed, this process had to be started
manually and other studies confirm this problem [37, 39, 75-77].
Our study showed that compaction improved the number of
successful runs of ingestion; however, it did not prevent failure of
the nodes, a finding that is supported by other studies [23, 24, 31,
68, 78]. If a node failed, the partly ingested file had to be cleaned
up, re-run, and re-indexed. The platform, therefore, showed a
single point of failure.

Data privacy in healthcare involves restricted access to
patient data but there are often challenging situations when using
hospital systems and attempting to find new trends in the data. For
instance, on one hand there are workarounds to access patient data
in critical situation like sharing passwords that goes against
HIPAA and FIPPA Acts [79]. There are strict rules and
governance on hospital systems with advanced protection of
privacy of patient data based on HIPAA [80-81] that must take
into consideration when implementing a BDA platform. It’s

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 35

processing and storage methods must adhere to data privacy at a
high level and also the accessibility of the data for public
disclosure [82-84]. One method of ensuring that patient data
privacy/security is to use indexes generated from HBase, which
can securely encrypt KV stores [36, 85-87], and HBase can further
encrypt with integration with Hive [35]. Scott [62] also stated that
Drill is already setup for encryption for HIPPA but we did not find
this out-of-the-box and attempting to encrypt was time consuming.

There are a large number of developers working on additional
libraries for Hadoop like Lucene and Blur [38]. For example,
Hadoop R, in particular, provides a rich set of built-in as well as
extended functions for statistical, machine learning, and
visualization tasks such as: data extraction, data cleaning, data
loading, data transformation, statistical analysis, predictive
modeling, and data visualization. Also, SQL-like queries can be
run via Hive as a data warehouse framework for ad hoc querying
that can be used with HBase, although no real-time complex
analyses can be performed [35]. More investigation of this study’s
different libraries of a variety of packages offered in Hadoop’s
ecosystem (many of have not been used in healthcare applications)
is crucial to ascertaining the best possible BDA platform.

Conclusion

Our HBDA platform showed high performance tested for
healthcare applications. With moderate resources, we were able
to run realistic SQL queries on three billion records and perform
interactive analytics and data visualization using Drill, Spark with
Zeppelin or Jupyter. The performance times proved to improve
over time with repeated sessions of the same query via the
Zeppelin and Jupyter interfaces. An ingesting and using CSV file
on Hadoop also had its advantages (i.e. simplicity, CSV exports
and imports commonly carried out in healthcare applications, fast
ingestion compared to HBase) but was expensive when running
Spark. Drill offers better low latency SQL engine but its
application tool and visualization were very limited to
customization, and, therefore, had lower usability. Useful
knowledge gained from this study included the following
challenges and specific objectives:

(1) data aggregation – actual storage doubled compared to what
was expected due to HBase key store qualifiers, Spark and Drill
had the same procedure to ingest Hadoop file before running SQL
queries;

(2) data maintenance – ingestions to the database required
continual monitoring and updating versions of Hadoop-
MapReduce and HBase with limitations persisting for
MapReduce (ultimately Java performance in the Reducer) from
one to three billion;

(3) data integration –

i. combination of ADT and DAD possible with simulated
patient data and followed current clinical reporting but
required a data model of the row keys and column families and
this needs to be further tested;

ii. study’s three billion indexed data at 30TB equalled six
times more rows than current production and archived at most
health authorities, which is said to be 500 million rows on
average for a health authority with up to three billion for the
entire Province;

iii. large volumes at different scales, i.e. hospital, health
authority, Province, and multiple Provinces, can be achieved
if ADT and DAD can be formed to flat file of CSV format

iv. data model was only verified via simplified analytical
queries of simulated data as a benchmark test, but not fully
integrated to a defined patient data model and health
informatics.

(4) data analysis – high performance of 3.5 seconds for three
billion rows and 90 columns (30TB of distributed files) achieved
with increasing complexity of queries with high performance of
Drill to run queries and high usability with customized Spark with
Jupyter; and

(5) pattern interpretation of application – randomized patterns
found via Spark with Jupyter interface; however, health trends
cannot be found via the application and further investigation
required using Hadoop’s Machine Learning Libraries (MLLib).

Conflict of Interest

Authors have no conflict of interest.

Acknowledgment

The authors would like to acknowledge WestGrid for their
support. This project was partially supported by 2015-2016
Research Seed Grant Competition, VIHA. Special thanks go to
Mr. Hamid Zamani for his exceptional work as research assistant.

References

[1] J. Gantz, D. Reinsel, “The Digital Universe in 2020: Big Data, Bigger
Digital Shadows, and Biggest Growth in the Far East,” Study report,
IDC,URL [www.emc.com/leadership/digital-universe/index.htm. (2012).

[2] J. Sun, C.K. Reddy, “Big Data Analytics for Healthcare,” Tutorial
presentation at SIAM Inter. Conf. Data Mining, Austin, TX., (2013).

[3] J. Manyika, M. Chui, J. Bughin, B. Brown, R. Dobbs, C. Roxburgh, B.
Hung, “Big Data: The next frontier for innovation, competition, and
productivity,” URL:http://www.mckinsey.com/insights/business_tech
nology/big_data_the_next_frontier_for_innovation, (2014).

[4] Canada Health Infoway, Big Data Analytics: Emerging Technology
Series, White Paper (Full Report), Ottawa, ON, (2013).

[5] World Health Organization (WHO), Atlas of eHealth Country Profiles –
The use of eHealth in support of universal health coverage, WHO Press,
Geneva, Switzerland, ISBN 978-92-4-156521-9, (2016).

[6] J. Alder-Milstein, A.K. Jha, “Healthcare’s “Big Data” challenge,” Am. J.
Manag. C., 19(7): 537-560 (2013).

[7] E. Baro, S. Degoul, R. Beuscart, E. Chazard. “Toward a literature-drive
definition of big data in healthcare,” BioMed Res. Intern., ID 639021, 9
pages, (2015).

[8] M.-H. Kuo, T. Sahama, A.W. Kushniruk, E.M. Borycki, D. Grunwell,
“Health Big Data Analytics: Current Perspectives, Challenges and
Potential Solutions,” Int. J. Big Data Intel, 1(12): 114–126 (2014).

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 36

[9] M.M. Hansen, T. Miron-Shatz, A.Y.S. Lau, C. Paton, “Big Data in
Science and Healthcare: A Review of Recent Literature and Perspectives,”
Yearb. Med. Inform., 9(1): 21-26 (2014).

[10] R. Nelson, N. Staggers, Health Informatics: an interprofessional approach,
Mosby, imprint of Elsevier Inc.; 2014. Saint Louis, MO, (2014).

[11] B. Wang, R. Li, W. Perrizo, Big Data Analytics in Bioinformatics and
Healthcare, 1st edition, Med. Info. Sci. Ref. - IGI Global, Kansas City,
MO, (2014).

[12] D. Agrawal, P. Bernstein, E. Bertino, S. Davidson, U. Dayal, M. Franklin,
J. Gehrke, L. Hass...etc, “Challenges and Opportunities with Big Data,”
Big Data - White Paper, Computing Research Association, (2012).

[13] H. Chen, H.L. Chiang, C. Storey, “Business intelligence and analytics:
from Big Data to big impact,” MIS Q 36(4): 1-24 (2012).

[14] H. Demirkan, D. Delen, “Leveraging the capabilities of service-oriented
decision support systems: Putting analytics and Big Data in cloud,” Decis
Support Syst., 55(1): 412-421 (2013).

[15] L.P. Jr. Garrison, “Universal Health Coverage-Big Thinking versus Big
Data,” Value Health 16(1): S1-S3 (2013).

[16] N.H. Shah, D. Tenenbaum, “The coming age of data-driven medicine:
translational bioinformatics' next frontier,” J. Am. Med. Inform. Assoc.,
19: e2-e4 (2012).

[17] T. White, Hadoop – The Definitive Guide: Storage and analysis at
internet scale, O’Reilly Media, San Francisco, CA, ISBN 978-1-491-
90163-2, (2015).

[18] Hadoop, “Apache Hadoop,” [http://Hadoop.apache.org.], (2016).

[19] R. Jurney, Agile data science: building data analytics applications with
Hadoop, O’Reilly Media, San Francisco, CA, (2013).

[20] R. Karim, C.F. Ahmed, B.-S. Jeong, H.J. Choi, “An Efficient Distributed
Programming Model for Mining Useful Patterns in Big Datasets,” IETE
Tech. Rev., 30(1): 53-63 (2013).

[21] P. Langkafel, Big Data in Medical Science and Healthcare Management.:
Diagnosis, Therapy, Side Effects, Walter de Gruyter Verlag GmbH,
Berlin/Boston, (2016).

[22] S. Sakr, A. Elgammal, “A. Towards a comprehensive data analytics
framework for smart healthcare services,” Big Data Research, 4: 44-58
(2016).

[23] R.C. Taylor, “An overview of the Hadoop/MapReduce/HBase
framework and its current applications in bioinformatics,” BMC
Bioinformatics, 11(12): S1 (2010).

[24] J. Dean, S. Ghemawat, “MapReduce: A Flexible Data Processing Tool,”
Comm. ACM, 53(1): 72-77 (2010).

[25] W. Raghupathi, V. Raghupathi, “Big data analytics in healthcare: promise
and potential,” Health Info. Sci. Syst., 2:3, 10 (2014).

[26] E.A. Mohammed, B.H. Far, C. Naugler, “Applications of the MapReduce
programming framework to clinical big data analysis: current landscape
and future trends,” BioData Mining, 7(22): 23 (2014).

[27] T. Dunning, E. Friedman, Real-World Hadoop, O’Reilly Media, San
Francisco, CA, (2010).

[28] ZooKeeper, “ZooKeeper - Apache Software Foundation project home
page,” [http://Hadoop.apache.org/ZooKeeper/], (2016).

[29] HBase, “HBase - Apache Software Foundation,” [http://Hadoop.
apache.org/HBase/], (2016).

[30] R.S. Chang, C.-S. Liao, K.Z. Fan, C.-M. Wu, “Dynamic Deduplication
Decision in a Hadoop Distributed File System,” Int. J. Distrib. Sens.
Networks, Article ID 630380, 14 (2014).

[31] A.B.M Moniruzzaman, S.A. Hossain, “NoSQL Database: new era of
databases for Big Data Analytics – Classification, Characteristics and
Comparison,” Int. J. Database Theo. App., 6(4): 1-14 (2013).

[32] H. Karau, A. Konwinski, P. Wendell, M. Zatharia, Learning Spark:
Lightning-Fast Big Data Analysis, O’Reilly Media, San Francisco, CA,
(2015)

[33] K. Sitto, M. Presser, Field Guide to Hadoop - An Introduction to Hadoop,
Its Ecosystem, and Aligned Technologies, O’Reilly Media, San Francisco,
CA, (2015).

[34] Hive, “Hive - Apache Software Foundation project home page,”
[http://Hadoop.apache.org/hive/], (2016).

[35] Hive HBase, “Hive-HBase Integration project home page,”
[http://wiki.apache.org/Hadoop/Hive/HBaseIntegration], (2016).

[36] J. Xu, M. Shi, C. Chen, Z. Zhang, J. Fu, C.H. Liu, “ZQL: A unified
middleware bridging both relational and NoSQL databases,” IEEE 14th
Int. Conf. Dependable, Autonomic and Secure Computing, Pervasive
Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and
Computing and Cyber Science and Technology Congress, 730-737,
(2016).

[37] A. Lith, J. Mattson, “Investigating storage solutions for large data: a
comparison of well performing and scalable data storage solutions for
real time extraction and batch insertion of data,” MSc Thesis, Chalmers
University of Technology, Gӧteborg, Sweden, (2010).

[38] W. Seo, N. Kim, S. Choi, “Big Data Framework for Analyzing Patents to
Support Strategic R&D Planning.” IEEE 14th Int. Conf. Dependable,
Autonomic and Secure Computing, Pervasive Intelligence and
Computing, 2nd Intl Conf on Big Data Intelligence and Computing and
Cyber Science and Technology Congress, 746-753 (2016).

[39] M. Maier, “Towards a Big Data Reference Architecturem,” MSc Thesis.
Eindhoven University of Technology, Netherlands, (2013).

[40] S.M. Freire, D. Teodoro, F. Wei-Kleiner, E. Sundsvall, D. Karlsson, P.
Lambrix, “Comparing the Performance of NoSQL Approaches for
Managing Archetype-Based Electronic Health Record Data,” PLoS ONE
11(3): e0150069 (2016).

[41] H, Nordberg, K. Bhatia, K. Wang, Z. Wang, “BioPig: a Hadoop-based
analytic toolkit for large-scale sequence data,” Bioinformatics 29(23):
3014–3019 (2013).

[42] N.A. Miller, E.G. Farrow, M. Gibson, L.K. Willig, G. Twist, B. Yoo, T.
Marrs, S. Corder, L. Krivohlavek, A. Walter, J.E. Petrikin, C.J. Saunders,
I. Thiffault, S.E. Soden, L.D. Smith, D.L. Dinwiddie, S. Herd, J.A. Cakici,
S. Catreux, M. Ruehle, S.F. Kingsmore, “A 26-hour system of highly
sensitive whole genome sequencing for emergency management of
genetic diseases,” Genome Med. Sep 30, 7(1): 100 (2015).

[43] G.P. Twist, A. Gaedigk, N.A. Miller, E.G Farrow, L.K. Willig, D.L.
Dinwiddie, J.E. Petrikin, S.E. Soden, S. Herd, M. Gibson, J.A. Cakici,
A.K. Riffel, J.S. Leeder, D. Dinakarpandian, S.F. Kingsmore,
“Constellation: a tool for rapid, automated phenotype assignment of a
highly polymorphic pharmacogene, CYP2D6, from whole-genome
sequences,” NPJ Genomic Med. 1, 15007, (2016).

[44] C.J. Saunders, N.A. Miller, S.E. Soden, D.L. Dinwiddie, A. Noll, N.A.
Alnadi, et al., “Rapid Whole-Genome Sequencing for Genetic Disease
Diagnosis in Neonatal Intensive Care Units,” Sci. Trans. Med. 4(154):
154ra135 (2012).

[45] C.J.M. Tauro, S. Aravindh, A.B. Shreeharsha, “Comparative Study of the
New Generation, Agile, Scalable, High Performance NOSQL Databases,”
Int. J. Comp. App. 48(20): 1-5 (2012).

[46] J.M Tien, “Big Data: unleashing information,” J. Syst. Sci. Syst. Eng.,
22(2): 127-151 (2013).

[47] C. Zhang, “Supporting multi-row distributed transactions with global
snapshot isolation using bare-bones HBase,” GRID, 11th IEEE/ACM Int.
Conf., 25-28, Waterloo, Canada, (2010).

[48] K. Moselle, “Data Management in the Island Health Secure Research
Environment,” Enterprise Architecture at Vancouver Island Health
Authority, Working Draft 5, Victoria, BC, (2015).

[49] E. Pattuk, M. Kantarcioglu, V. Khadilkar, H. Ulusoy, S. Mehrotra,
“BigSecret: A secure data management framework for key-value stores,”
Tech. Rep. [http://www.utdallas.edu/~exp111430/techReport.pdf]
[Access December 2015], (2013).

[50] M.K. Ross, W. Wei, L. Ohno-Machado, “Big Data” and the Electronic
Health Record,” Yearb. Med. Inform., 97-104, (2014).

[51] D. Chrimes, M.-H. Kuo, B. Moa, W. Hu, "Towards a real-time big data
analytics platform for health applications", Int. J. Big Data Intell., Vol. 4,
No. 2, pp.61–80, (2017).

[52] H. Chen, S.S Fuller, C. Friedman, W. Hersh, “Knowledge management,
data mining, and text mining in medical informatics,” In: H. Chen, S.S.
Fuller, C. Friedman, W. Hersh (Eds.). Medical Informatics: knowledge
management and data mining in biomedicine. Springer, pp. 20-40, (2005).

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 37

[53] D. Li, H.W. Parl, M.I. Ishag, E. Batbaatar, K.H. Ryu, “Design and Partial
Implementation of Health Care System for Disease Detection and
Behavior Analysis by Using DM Techniques,” IEEE 14th Int. Conf.
Dependable, Autonomic and Secure Computing, Pervasive Intelligence
and Computing, 2nd Intl Conf on Big Data Intelligence and Computing
and Cyber Science and Technology Congress, 781-786, 2016.

[54] D. Chrimes, B. Moa, H. Zamani, M-H. Kuo, “Interactive Healthcare Big
Data Analytics Platform under Simulated Performance,” IEEE 14th Int.
Conf. Dependable, Autonomic and Secure Computing, Pervasive
Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and
Computing and Cyber Science and Technology Congress, 811-818.

[55] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,
T. Chandra, A.E. Fikes, “Bigtable: A distributed storage system for
structured data,” Seventh Symposium on Operating System Design and
Implementation (ODI) Seattle, WA: Usenix Association, 205-18, (2006).

[56] M.-H. Kuo, D. Chrimes, B. Moa, X. Hu, “Design and Construction of a
Big Data Analytics Framework for Health Applications,” IEEE
Proceedings Int. Conf. on Smart City/SocialCom/SustainCom together
with DataCom 2015 and SC2 2015, Chengdu, China. 631-636 (2015).

[57] Canadian Institute of Health Information (CIHI), “DAD Abstracting
Manual: Province-Specific Information for British Columbia,” Ottawa,
ON. CIHI Publishing, (2012).

[58] Cloudera, “Integrating Hive and HBase - Cloudera Developer Center,”
[http://http://www.cloudera.com/blog/2010/06/integrating-hive-and-
HBase/], (2016).

[59] D. Henschen, “Emerging Options: MapReduce, Hadoop,” Young, But
Impressive, Inform. Week, 24 (2010).

[60] Apache Phoenix, “Apache Spark Plugin,” https://phoenix.apache.org/
phoenix_spark.html, (2016).

[61] B. Dhyani, A. Barthwal, “Big Data Analytics using Hadoop,” Int. J.
Comp. App., 108(12): 1-5 (2014).

[62] J. Scott, “Apache Spark vs. Apache Drill. Converge Blog, Powered by
MapR.,” [https://www.mapr.com/blog/apache-spark-vs-apache-drill]
[accessed October 12, 2016], (2015).

[63] T. Dunning, E. Friedman, T. Shiran, J. Nadeau, Apache-Drill, O’Reilly
Media, San Francisco, CA, (2016).

[64] W.K. Lai, Y.-C. Chen, T.-Y. Wu, M.S. Obaidat, “Towards a framework
for large-scale multimedia data storage and processing on Hadoop
platform,” J. Supercomp., 68: 488–507 (2014).

[65] S.M. Nabavinejad, M. Goudarzi, S. Mozaffari, “The Memory Challenge
in Reduce Phase of MapReduce Applications,” J. Latex Class Files,
Transactions on Big Data IEEE, 14(8) (2016).

[66] A. Rabkin, R.H. Katz, “How Hadoop Clusters Break,” IEEE Software,
July/August, 88-95 (2013).

[67] Y. Chen, S. Alspaugh, R. Katz, “Interactive Analytical Processing in Big
Data Systems: A Cross-Industry Study of MapReduce Workloads,”
Proceedings of the VLDB Endowment 5(12): 1802–1813 (2012).

[68] A.L. Greeshma, G. Pradeepini, “Input split frequent pattern tree using
MapReduce paradigm in Hadoop,” J. Theo. App. Inform. Tech., 84(2):
260-271 (2016).

[69] S.C. Yu, Q.-L. Kao, C.R. Lee, “Performance Optimization of the SSVD
Collaborative Filtering Algorithm on MapReduce Architectures,” IEEE
14th Int. Conf. Dependable, Autonomic and Secure Computing,
Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology
Congress, 612-619 (2016).

[70] C. von der Weth, A. Datta, “Multi-term Keyword Search in NoSQL
Systems,” IEEE Internet Computing, January/February, 34-43 (2012).

[71] Y. Wang, W. Goh, L. Wong, G. Montana, “Random forests on Hadoop
for genome- wide association studies of multivariate neuroimaging
phenotypes,” BMC Bioinformatics 14(16): 1–15 (2013).

[72] S. Nishimura, S. Das, D. Agrawal, A.E. Abbadi, “MD-HBase: design and
implementation of an elastic data infrastructure for cloud-scale location
services,” Springer Science+Business Media, LLC, (2012).

[73] A.V. Nguyen, R. Wynden, Y. Sun, “HBase, MapReduce, and Integrated
Data Visualization for Processing Clinical Signal Data,” AAAI Spring
Symposium: Computational Physiology, (2011).

[74] J. Sun, “Scalable RDF store based on HBase and MapReduce,” Advanced
Computer Theory and Engineering (ICACTE), 3rd Int. Conf., Hangzhou,
(2013).

[75] Y.-J. Chang, C.-C. Chen, J.-M. Ho, C.-L. Chen, “De Novo Assembly of
High- Throughput Sequencing Data with Cloud Computing and New
Operations on String Graphs,” Cloud Computing (CLOUD), IEEE 5th
International Conference, 155–161 (2012).

[76] W-C. Chung, H.-P. Lin, S.-C. Chen, M.-F. Jiang, Y.-C. Chung,
“JackHare: a framework for SQL to NoSQL translation using
MapReduce,” Autom. Softw. Eng. 21: 489–508 (2014).

[77] H. Dutta, J. Demme, Distributed Storage of Large Scale
Multidimensional EEG Data using Hadoop/HBase, Grid and Cloud
Database Management, New York City: Springer, (2011)

[78] J. Dean, S. Ghemawat, MapReduce: Simplified Data Processing on Large
Cluster, OSDI, (2004).

[79] R. Koppel, S. Smith, J. Blythe, V. Kothari, “Workarounds to computer
access in healthcare organizations: you want my password or a dead
patient?” Stud. Health. Tech. Inform., 208: 215-20 (2015).

[80] Canada Health Infoway and Health Information Privacy Group, Privacy
and EHR Information Flows in Canada (Version 2.0), (2012).

[81] S. Kumar, A. Henseler, D. Haukaas, “HIPAA's effects on US healthcare,
Int. J. Health C. Q. Assurance,” 22(2): 183–197 (2009).

[82] J Erdmann, “As Personal Genomes Join Big Data Will Privacy and
Access Shrink?” Chemistry & Biology, 20(1): 1-2 (2013).

[83] S. Spiekermann, C.F. Cranor, “Engineering privacy,” IEEE Trans. Soft.
Eng. 35(1): 67-82 (2009).

[84] K.T. Win, W. Susilo, Y. Mu, “Personal health record systems and their
security protection,” J. Med. Syst., 30(4): 309–15 (2006).

[85] N.V. Chawla, D.A. Davis, “Bringing Big Data to Personalized Healthcare:
A Patient- Centered Framework,” J. Gen. Intern. Med., 28(3): S660–5
(2013).

[86] Z. Chen, S. Yang, S. Tan, L. He, H. Yin, G. Zhang, “A new fragment re-
allocation strategy for NoSQL database systems,” Front. Comp. Sci., 9(1):
111–127 (2015).

[87] S. Wang, I Pandis, C. Wu, S. He, D. Johnson, I. Emam, F. Guitton, Y.
Guo, “High dimensional biological data retrieval optimization with
NoSQL technology,” BMC Genomics 15(8): S3 (2014).

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 38

Appendix

Table 1. Literature review of big data technologies using Hadoop with possible applications in healthcare (Yes* or No**).

Big Data
Technologies Description Purpose Applied in

Healthcare*

Hadoop
Distributed
File System
(HDFS)

The Hadoop Distributed File System (HDFS) is the place in a Hadoop cluster where you store
data (Apache Hadoop, 2016). Built for data-intensive applications, the HDFS designed to run
on clusters. HDFS optimized for high performance, read-intensive operations, and resilient to
failures in the cluster. It does not prevent failures, but likely to lose data, because HDFS by
default makes multiple copies of each of its data blocks [17-18].

High capacity, fault
tolerant, inexpensive
storage of very large
datasets [19].

Yes* [20-23]

MapReduce
MapReduce was the first and is the primary programming framework for developing
applications in Hadoop. Advanced work in Java to use MapReduce in its original and pure form
[24].

A programming
paradigm for
processing big data.

Yes* [23, 25]

Hadoop Fully integrated, and linkage between two technologies: HDFS and MapReduce [26]. Processing Yes* [23]

YARN (Yet
Another
Resource
Negotiator)

Hadoop resource allocator. It is a resource- management platform responsible for managing
compute resources in clusters and using them for scheduling of users’ applications [27]. Works
efficiently and easy configure with Apache Spark.

Resource allocator Yes* [23]

ZooKeeper

Hadoop and HDFS are effective tools for distributing work across many machines. ZooKeeper
is not intended to fill the space of HBase or any other big data key-value store. In fact, there are
protections built into ZooKeeper to ensure that folks do not attempt to use it as large data store.
ZooKeeper is, however, just right when all you want to do is share a little bit of information
across your environment [28]. Works efficiently with Apache Drill.

Coordination Yes* [23]

HBase

HBase is a NoSQL database system included in the standard Hadoop distributions. It is a key-
store, logically. This means that rows are defined by a key, and have associated with them a
number of bins (or columns) where the associated values are stored [29]. The only data type is
the byte string. Physically, groups of similar columns are stored together in columns families.
Most often, HBase is accessed via Java code, but APIs exist for using HBase with Pig, Thrift,
Jython (Python based), and others. HBase is not normally accessed via MapReduce but is
configurable. It does have a shell interface for interactive use.

NoSQL database
with random access Yes* [26, 30-31]

Spark
MapReduce is the primary workhorse at the core of most Hadoop cluster. While highly
effective for very large batch-analytic jobs, MapReduce has proven to be suboptimal for
applications like graph analysis that require iterative processing and data sharing. Three core
areas: 1) resilient distributed dataset (RDD), transformation, and action [32].

Processing\storage No**

Spark SQL Spark outperforms Hive [33]. Easier to configure and less dependent on MapReduce and
Indexing.

SQL access to
Hadoop data No**

Hive
The goal of Hive is to allow SQL access to data in the HDFS [34]. The Apache Hive data-
warehouse software facilities querying and managing large datasets residing in HDFS. Hive
defines a simple SQL-like query language, called HQL that enables users familiar with SQL to
query the data [35].

Data Interaction No** [36]

Cassandra
Key-value datastores are a common fixture in any big data system because they are easy to
scale, quick, and straightforward to work with. Cassandra is a distributed key-value database
designed with simplicity and scalability in mind [37].

Key-value store No** [22]

Apache Solr
While Solr is able to use the Hadoop Distributed File System to store data, it is not truly
compatible with Hadoop and does not use MapReduce or Yarn to build indexes or respond to
queries. There is a similar effort named Blur to build a tool on top of the Lucene framework that
leverages the entire Hadoop stack [38].

Document
Warehouse No**

Lucene and
Blur

Blur is a tool for indexing and searching text with Hadoop. Because it has Lucene (a very
popular text-indexing framework) at its core, it has many useful features, including fuzzy
matching, wildcard searches, and paged results. It allows you to search through unstructured
data in a way that would otherwise be very difficult.

Document
Warehouse

No, not in healthcare
but development and
patents** [38]

MongoDB
MongoDB is a document-oriented database, the document being a JSON object. In relational
databases, you have tables and rows. In MongoDB, the equivalent of a row is JSON document,
and the analog to a table is a collection, a set of JSON documents [39].

JSON document-
oriented database Yes* [26, 40]

JSON JSON is becoming common in Hadoop because it implements a key-value view of the world. Data description and
transfer Yes* [22]

Oozie Hadoop’s workflow scheduler [17]. A workflow scheduler to manage complex multipart
Hadoop jobs. Task scheduler No**

Pig
Pig is translated or compiled into MapReduce code and well optimized so that a series of Pig
statements do not generate mappers and reducers for each statement and then run them
sequentially [41].

High-level data flow
language for
processing data.

No**

Storm
Many technologies in the big data ecosystem, including Hadoop MapReduce, are built with
very large tasks in mind. These systems are designed to perform work in batches, bundling
groups of smaller tasks into larger tasks and distributing those large tasks [39].

Streaming ingest. Yes* [42-43]

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 39

Table 2. Operational experiences, persistent issues and overall limitations of big data technologies and components that impacted the Big Data Analytics (BDA) platform.

Technology
and

Component
Brief Experience Issue and Limitation Impact to Platform

Hadoop
Distributed File
System (HDFS)

Each node requires configuration
and monitoring, distributed filing
system is unbalanced and local
disks will not fail over via Hadoop.
If the local disks differed in size
500GB versus 1TB versus 2TB,
once full capacity hit, HDFS would
crash.

Files need to be distributed with
relatively the same. The local
disks reaches max 90% and
should re- distribute via inherent
HDFS’s processes but did not
quickly re-balance. WestGrid’s
failover to disks doesn’t work
because Hadoop is moving the
files to re-balance the nodes. No
failover for Hadoop from full
disks to available (also issue with
WestGrid).

Did not reconfigure more than 6 nodes
because very difficult to maintain and
ongoing issues. If one unbalanced then it will
either drastically slow the Reducer or it will
be in quasi un-processing state with
constantly moving files. Had to add additional
2- 4TB of local disks because issue persisted
with running to 3 billion. Impact was on
database ingestion inoperable and need to
cleared and restarted. Had to implement large
local disks of all the same size to avoid
Hadoop HDFS crash.

MapReduce

Map component was extremely fast
at 3-12mins for each of the
iterations. Reduce can start at 10-
40% during the Map and this
variation was not controllable.
Reducer hits 99% after 12 hours
and crashes. Optimized iterations at
50 million rows as it took long to
run for 100 million and more
difficult to monitor.

Reducer fails and ingestion needs
to be cleared from nodes and
module load restarted. Reducer
was extremely slow. Reducer was
placing the files only on one
node.

Totally failed ingestion and system
inoperable. Indexed files need to be removed
from node and restarted to complete the
iteration. Extremely slow performance to
form the database and requires constant
monitoring. Current major limitation and
more advanced algorithms and the java.
Coding for MapReduce needs to be further
explored, verified and implemented.

HBase

All five RegionServers need to run
in unison otherwise unbalanced
HDFS and poor performance.
InfiniBand not always accessed by
RegionServer. HBase qualifiers and
key stores influencing the Reduce
part at each of the iterations the key
store had to be re- indexed.

There is an error message via a
customized script when restarting
the bulkload to HBase but
sometimes the Reducer will place
the data on the ones available
even though it should stop.
RegionServers slow or killed
because of lack of connectivity.
RegionServers constantly died
but resolution was to run
compaction after ingestion.
HBase cannot re- index data from
either HFiles that crashed and
didn’t complete at any Reducer
level, even at 99-100%.

RegionServers were required for the ingestion
to form the database, without them it was not
operational. Ongoing monitoring and log
checking if the RegionServers were down or
not connected to InfiniBand. The script to
prompt user that 5 RegionServers dead
provided better usability as finding the log
files was tedious work and time consuming.
Run compaction with shell script after each
iteration to HBase. It ran only 50 million
because indexing could fail at larger amount.
It was easier to clean and restart than at 100
million rows. If index failed or space on local
disk maximized, had to re-run all HFiles to
bulkload via MapReduce to HBase again.
Each iteration set to start + 1 from the last and
this setting was manually done.

ZooKeeper and
Yarn

ZooKeeper services need to be
ongoing and configuration done for
InfiniBand in its relation to
RegionServers.

ZooKeeper not allocating and/or
slow.

Extreme slow performance when ZooKeeper
services were not running properly but
additional configuration minimized this
limitation with few issues thereafter.

Phoenix
Length of columns too long and
need to be matching in the schema
and on the distributed nodes.

Extremely slow performance in
ingesting the files of column
names are more than 12
characters. Queries will return an
error if the column names do not
match.

Maintain a database schema with current
names in a file on the nodes such that if the
files ingested don’t match it will show error
and to verify while running queries. Zero
times this occurred while ingesting files but
many times when running queries.

Spark Relies on Yarn and advanced Java
Programming.

Yarn not allocating and slow
process, and more java code
(Scala) required.

Potential slow performance if not coded
correctly. Valid online code. sources.

Spark with
Zeppelin

30min delay to run the SQL-like
script in its initial additional
ingestion, SQL-like code is more
complicated than traditional SQL.

30min delay to start testing or
running queries.

30minute delay before running queries, which
takes the same amount of time as with
Jupyter. Currently, no fix to this issue.

Spark with
Jupyter

Need to perform some Java coding
to produce graphs.

No graphs produced and no
buttons on interface available like
Zeppelin.

Once the Java was established it has high
usability and excellent performance.

Drill Can only plugin one SQL code at a
time, and relies on ZooKeeper

Poor usability, ZooKeeper not
allocating and slow.

Extremely fast but poor usability interfaces.
It was recently developed as net new version
so better interfaces are forthcoming or at least
improved changes to integration with other
interface engines.

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 40

Table 3. Duration (seconds) of queries run by Apache Phoenix over 3 Billion with unbalanced* and balanced* HBase NoSQL datasets across Hadoop nodes.

Description Type Apache Phoenix SQL-like Query
Output
Efficiency
(OE)

Output
Efficiency
(OE)

 *unbalanced
(seconds)

**balanced
(seconds)

#1. Basic selection of
encounter data Simple select * from DADS1 where EncounterID<10010 and

EncounterID>10004; 3.87 3.05

#2. Basic selection of
encounter data based on
admitted via ambulance

Simple select * from DADS1 where EncounterID<10010 and
EncounterID>10004 and ADMIT_BY_AMBULANCE ='C'; 3.65 1.65

#3. Frequency of Diagnosis
(Dx) Code with LOS Simple

select Diagnosis_Code, COUNT (Diagnosis_Code),
AVG(LOS) from DADS1 where EncounterID<1000100 and
EncounterID>1000000 GROUP BY Diagnosis_Code;

3.11 2.11

#4. Frequency of Diagnosis
(Dx) Code with Diagnosis
and LOS

Simple
select Diagnosis_Code, COUNT (Diagnosis_Code) as
Frequency, LOS from DADS1 where
EncounterID<1000100 and EncounterID>1000000 GROUP
BY Diagnosis_Code, LOS;

3.32 2.32

#5. Diagnosis Code with
Discharge date and
Discharge time

Simple
select Diagnosis_Code, Discharge_Date,
Discharge_Time from DADS1 where
EncounterID<1000010 and EncounterID>1000005;

3.02 1.02

#6. Diagnosis Code with
Unit Transfer Occurrence Simple

select Diagnosis_Code, COUNT (Diagnosis_Code),
AVG(Unit_Transfer_Occurrence) from DADS1 where
EncounterID<1000100 and EncounterID>1000050 GROUP
BY Diagnosis_Code;

3.67 1.67

#7. Diagnosis Code with
Location building, Location
Unit, Location Room,
Location Bed, Discharge
Disposition

Simple
select Diagnosis_Code, Location_Building,
Location_unit, Location_Room, Location_Bed,
Discharge_Disposition from DADS1 where
EncounterID<1000010 and EncounterID>1000000;

3.23 0.98

#8. Diagnosis Code with
Encounter Type and LOS Simple

select Diagnosis_Code, Encounter_Type, LOS from
DADS1 where EncounterID<1000010 and
EncounterID>1000000;

3.01 0.98

#9. Diagnosis Code with
Medical Services and LOS Simple

select Diagnosis_Code, Medical_Services, LOS from
DADS1 where EncounterID<1000010 and
EncounterID>1000000;

3 1.02

#10. Provider Service with
Diagnosis codes Simple

select Diagnosis_Code, Provider_Service from
DADS1 where EncounterID<1000010 and
EncounterID>1000000;

3.52 1.92

#11. Highest LOS for
MRNs with Admit date Simple

select LOS, MRN, Admission_Date from DADS1 where
EncounterID<1000100 and EncounterID>1000050 GROUP
BY LOS, MRN, Admission_Date ORDER BY LOS DESC;

3.62 1.62

#12. Frequency (or number)
of Admit_category with
Discharge_Date

Simple
select Admit_Category, COUNT (Admit_Category) as
Frequency, Discharge_Date from DADS1 where
EncounterID<1000100 and EncounterID>1000050 GROUP
BY Admit_Category, Discharge_Date;

3.54 1.89

#13. Admitted by
Ambulance, Interventions,
and Medical Services with
Diagnosis

Complex

select Gender, COUNT (Admit_by_Ambulance), COUNT
(Discharge_Disposition), COUNT
(Interven_Occurrence), COUNT (Medical_Services),
COUNT (Diagnosis_Code), MAX(LOS) from DADS1 where
EncounterID<1000010 and EncounterID>1000000 GROUP
BY Gender;

3.67 1.89

#14. Intervention and
Location with Admit and
Location

Complex

select Interven_Occurrence,
Interven_Episode_St_Date, Interven_Location,
Interven_Episode_Start_Dat e,
Interven_Attribute_Location, Admission_Time,
Location_Unit, Location_Bed, Location_Building
from DADS1 where EncounterID<1000010 and
EncounterID>1000000;

3.03 1.87

#15. Medical Services with
Unit Transfer Occurrence Complex

select Count (Episode_Duration), Count
(Anesthetistic_Technique),
Count(Interven_Location),
Count(Medical_Services), Count
(Unit_Transfer_Occurrence) from DADS1 where

3.47 1.92

http://www.astesj.com/

D. Chrimes et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 1, 23-41 (2017)

www.astesj.com 41

EncounterID<1000010 and EncounterID>1000000 Group
BY age;

#16. Admit Category and
Discharge with Transfer Complex

select LOS, Count(Discharge_Disposition),
Count(Most_Responsible_Si te),
Max(Transfer_In_Date), Min(Transfer_Out_Date),
Max(Transfer_Hours), Max(Days_In_Unit),
Count(Patient_Service), Max
(Patient_Service_Occurrence) from DADS1 where
EncounterID<1000010 and EncounterID>1000000 GROUP
BY LOS;

3.61 1.75

#17. Encounter, Discharge
and Transfer Complex

select Diagnosis_Code, Encounter_Type, LOS,
Admit_Category, Discharge_Date, Discharge_Time,
Location_Building, Location_Unit, Location_Bed
from DADS1 where EncounterID<1000010 and
EncounterID>1000000 ORDER BY Diagnosis_Code DESC;

3.56 1.53

#18. Medical Services and
Days in Unit Complex

select Patient_Service_Days,
Patient_Service_Occurrence, Transfer_In_Date,
Transfer_Out_Date, Days_In_Unit,
Medical_Services, Location_Unit from DADS1 where
EncounterID<1000010 and EncounterID>1000000;

3.72 2.34

#19. Admission, Transfer
with Intervention and
Encounter

Complex

select LOS, Count(MRN), Count(Admission_Date),
Count(Admission_Time), Max(Institute_From),
Count(Admit_Category), Count(Encounter_Type),
Count(Entry_Code), Count(Diagnosis_Code),
Max(Interven_Episode_St_ Date),
Count(Interven_Attribute_Extent) from DADS1 where
EncounterID<1000010 and EncounterID>1000000 and
LOS BETWEEN 0 AND 9999 GROUP BY LOS ORDER BY LOS
DESC;

3.82 3.02

#20. Frequency (or number)
of Admit_Category with
Patient Service

Complex

select Admit_Category,
AVG(Patient_Services_Occurrence), COUNT
(Patient_Service_Type), MAX(Transfer_In_Date),
MAX(Transfer_Out_Date), Count
(Transfer_Nursing_Unit),
Count(Service_Nursing_Area),
Count(Medical_Services), Count(Encounter_Type),
Count(Diagnosis_Type), count(Location_Unit),
count(Provider_Service) from DADS1 where
EncounterID<1000010 and EncounterID>1000000 GROUP
BY Admit_Category, Discharge_Date;
Admit_Category, Discharge_Date;

3.86 2.61

#21. Provider Occurrence
with Nursing Complex

select Provider_Service, Provider_Type,
Diagnosis_Code, Provider_Occurrence,
Transfer_Nursing_Unit, Medical_Services from
DADS1 where EncounterID<1000010 and
EncounterID>1000000;

3.78 1.7

#22. Provider with
Diagnosis and Intervention Complex

select Provider_Service, Provider_Type,
Provider_Occurrence, Diagnosis_Code,
Diagnosis_Type, Medical_Services,
Unit_Transfer_Occurrence, Interven_Code,
Interven_Occurrence, Interven_Provider_Service,
Interven_Episode_St_Date,
Interven_Attribute_Extent from DADS1 where
EncounterID<1000010 and EncounterID>1000000;

3.86 1.71

http://www.astesj.com/

	2. Interactive Healthcare Big Data Analytics (HBDA) Framework
	2.1. Conceptual Framework

	3. Implementation of HBDA Platform
	3.1. Overview of High Performance System(s)
	3.2. Implementation of Apache Spark Technology System
	3.3. Implementation of Apache Drill Technology System

	4. Findings and Significant Benchmarking Results
	4.1. Technical Challenges
	4.2. Data Size and Ingestion Time
	4.3. SQL Query Results
	4.4. Usability, Simple Analytics and Visualizations

	5. Discussion
	Conclusion
	Conflict of Interest
	Acknowledgment
	References
	Appendix

